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Properties of random graphs with hidden color

Bo Söderberg*
Complex Systems Division, Department of Theoretical Physics, Lund University, Lund, Sweden

~Received 8 May 2003; published 12 August 2003!

We investigate in some detail a recently suggested general class of ensembles of sparse undirected random
graphs based on a hidden stub coloring, with or without the restriction to nondegenerate graphs. The calcula-
bility of local and global structural properties of graphs from the resulting ensembles is demonstrated. Cluster
size statistics are derived with generating function techniques, yielding a well-defined percolation threshold.
Explicit rules are derived for the enumeration of small subgraphs. Duality and redundancy is discussed, and
subclasses corresponding to commonly studied models are identified.
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I. INTRODUCTION

Numerous phenomena in physics, molecular biology,
cial sciences, and information technology can be describe
terms of networks, where the nodes represent elemen
units such as spins, genes, proteins, people, or compu
while the links describe their interaction structure. The f
mation process of these networks typically is not entir
deterministic, but involves stochastic components, and
resulting networks can be viewed asrandom graphs—
random members of astatistical ensembleof graphs.

We are primarily interested intruly randomgraphs, with-
out any prior distinction between individual nodes or grou
of nodes, such as an underlying lattice or other regular st
ture. An example is theclassic modelof Erdös and Re´nyi @1#,
with a single parameter~in addition to the orderN of the
graph! in the form of a real numberc, such that each possibl
edge is independently and randomly realized with a proba
ity p5c/N ~in the sparse version!. The classic model ha
been thoroughly studied in various versions, static as we
evolving@2–4#. Its asymptotic (N→`) degree distribution is
Poissonian with averagec and it displays aphase transition
in the form of a percolation threshold atc51, above which
a giant component emerges containing a finite fraction of
nodes in the thermodynamic limit of largeN. For a long time
this and related models dominated the stage; however,
fail to describe the properties of most real-world network

In the last decades, a multitude of alternative rand
graph models have been investigated, falling into two ma
categories. In astatic model, a statistical ensemble of rando
graphs is considered without bothering about how the gra
were formed@5–10#. A dynamical modelattempts to describe
the random growth and evolution of a network, leading to
evolving ensemble of graphs@11–14#.

Here, we will focus onstatic descriptionsof random
graphs in terms of fixed statistical ensembles, bearing
mind that the dynamics of real-world networks is not alwa
directly observable, and the comparison of model and rea
typically has to be done based on static properties as
served in snapshots of real networks.

For the inference of a particular model based on the
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served properties of real networks to be meaningful, a su
ciently general formalism is desirable, where more spec
models appear as special cases of one and the same ge
class of graph ensembles.

In a recent paper@15#, a promising candidate for such
general formalism was proposed; it will be referred to
CDRG ~for colored degree-based random graphs!. It is based
on a hidden coloringof stubs ~incidence points of edge
upon a vertex! and a specification of the colored stub dist
bution of vertices as well as edges. This approach admi
unifying formalism for models of symmetric, truly random
graphs that aresparse~typical degrees are finite and do n
grow with the graph sizeN).

The resulting class of random graph ensembles incor
rates several commonly studied models, such as the cla
random graph and random graphs with a given degree di
bution @5,7,16,17#, as well as vertex-colored extensions
these@8,10#. Models with degree-biased edge distributio
@9# also fit into this approach. Furthermore, although the
proach in its present form is restricted to symmetric grap
it has a natural extension to directed graphs, which will
explored in forthcoming work.

The discussion in Ref.@15# was restricted to ensembles o
simple~nondegenerate! graphs containing no cycles of lengt
one~self-couplings or tadpoles! or two ~double edges!, based
on the restriction to simple graphs of an underlying ensem
of multigraphswhere such degeneracies are allowed. Mu
graph ensembles are interesting in their own right and m
convenient for analytical purposes. Here, we will consid
both types of CDRG ensembles, denoting by CDRG-s the
restriction to the class of ensembles of simple graphs and
CDRG-m the unrestricted class of multigraph ensembles.
generic ensembles of both types, we will present a theore
analysis of the properties of the resulting graphs, with
emphasis on the analysis of observable local and glo
graph characteristics.

The computability of structural properties is an importa
factor for the possibility of devising a systematic model i
ference scheme based on the observed properties of
world networks. Both types of ensemble admit an analysis
both global and local structural properties of the result
random graphs. The global connectivity properties of a gra
can be analyzed in terms of the size distribution of connec
components, for which a generating function analysis w
©2003 The American Physical Society07-1
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devised in Ref.@15#. Local structural properties are assoc
ated with the frequencies of appearance of small subgra
also these will be shown to be asymptotically computable
both types of ensemble.

The remainder of this paper has the following structure
Sec. II, we will define our notation and introduce basic co
cepts to be used in the rest of the paper. Questions regar
ensemble definitions, for CDRG-m as well as CDRG-s, will
be discussed in Sec. III. Section IV contains a basic stat
cal analysis of the ensembles as seen from the point of v
of the stubs. In Sec. V, we will discuss the statistics of
number of copies of an arbitrary small graph as a subgr
of a random graph, and define rules for the computation
the asymptotically expected counts, pointing out differen
and similarities between CDRG-s and CDRG-m ensembles.
In Sec. VII, we will discuss the global properties of rando
graphs from CDRG ensembles, as revealed by a genera
function analysis of the cluster size distribution, extend
the analysis presented in Ref.@15#. Both the global and loca
analysis reveal a certain redundancy~symmetry! property of
CDRG models, which forms the subject of Sec. VIII. In Se
IX, we will identify subclasses of CDRG ensembles cor
sponding to commonly studied models. Section X, fina
contains summary of our main results and some conclud
remarks and speculations.

II. NOTATION AND BASIC CONCEPTS

A labeled graphconsists of a set of distinguishableverti-
ces~nodes, sites, points!, which may be pairwise connecte
by edges~links, bonds, lines!.

Unless otherwise stated, a graph is assumed to besymmet-
ric ~undirected!, such that edges have no particular directi
~as opposed to adigraph—or directed graph—where an edg
has a direction, pointing from one vertex to another!.

A graph withN vertices is conveniently represented by
symmetricN3N adjacency matrixS. An elementSi j counts
the number of edges between verticesi andj; thus, each edge
contributes both toSi j and Sji ; as a result each diagona
elementSii will be even, representing twice the number
self-couplings of vertexi. In a simple graph, cycles of lengt
one~self-couplings or tadpoles! and two~multiple edges! are
absent; as a result, the diagonal elements ofS are zero and
the remaining elements are restricted to the values 0 or
multigraph may be simple or degenerate.

The degree~or connectivity! m of a vertex is defined as
the number of edges connected to it, given by the co
sponding row sum( jSi j ; the vertex can be considered
possessingm stubs—points where a single-edge end poi
~butt! is attached.

It is sometimes convenient to consider not only the ve
ces, but also the edges, and indeed the individual stubs
butts, as being distinguishable.

The degree sequenceof a graph is an ordered list ofN
integers (m1 , . . . ,mN), describing the individual degrees o
the N vertices. Alternatively, it can be summarized in term
of thedegree counts, Nm5( id(m,mi), counting the number
of vertices having degreem.

A commonly studied class of ensembles is based on
02610
s;
n

n
-
ing

ti-
w
e
h
f
s

ing
g

.
-
,
g

A

-

-
nd

v-

ing an asymptoticdegree distribution$pm%, from which a
compatible degree sequence can be determined for a g
graph of sizeN with degree countsNm'Npm . Then, a ran-
dom compatible graph is chosen by means of a random
pairing ~the configuration model@5,17#!. This approach will
be referred to as DRG, for degree-based random graphs

In another approach, IRG~for inhomogeneous random
graphs!, a class of vertex-colored extensions of the clas
model has been considered, where each vertex is rando
and independently assigned an abstract type~color! drawn
from a given distribution, and where edge probabilities a
allowed to depend on the connected pair of colors@8#.

In a recent paper@15#, the philosophies behind DRG an
IRG were combined in a novel approach, where a hidd
stub coloringwas used to define a very general class of
sembles with a given degree distribution. This approa
CDRG, forms the main subject of this paper.

Thus, we will consider stub-colored graphs, where ea
stub independently carries an internal characteristic, ahidden
color aP@1, . . . ,K#, to be considered unobservable. The d
greem of a vertex then decomposes into the sum of con
butionsma counting the stubs with a definite colora. These
subdegrees can be collected in aK vector m
5(m1 , . . . ,mK), to be referred to as thecolored degreeof
the vertex.

It is then natural to consider thecolored degree sequenc
of such a graph in terms of the numbersNm of vertices with
a distinct colored degreem.

Accordingly, each edge connects a pair of colored st
and can be associated with a color pair (a,b). We can then
also consider the countnab5nba of edges for each color pair
where anab edge for practical reasons contributes both
nab andnba ~so diagonal elementsnaa are even!.

The total number of butts with colora in the graph is then
given by (bnab ; this must match the corresponding stu
count Ma[(mmaNm . In particular, the total butt count
(abnab , must be even~being twice the number of edges! and
it must equal the total stub count,M5(aMa
5(m(amaNm . We will find it convenient to collect the col-
ored stub counts in a vectorM5(M1 , . . . ,MK).

Throughout this paper,K vectors will be denoted by
~mostly lower case, withM being an exception! bold sym-
bols such asx[(x1 , . . . ,xK), in terms of which an obvious
simplified notation will be used:xm[)axa

ma , m![)ama!,
etc. The uniformK vector (1, . . . ,1) will be denoted as1.
Similarly, K3K matrices will be denoted by upper case bo
symbols such asT5$Tab%, with matrix product indicated by
juxtaposition. Acomponent wiseproduct will be denoted by
a cross (3), as inx3m[(x1m1 , . . . ,xKmK). The transpose
of a matrixT will be denoted byTÁ and the matrix inverse
of the transpose byT2Á.

We will be interested in models based on a definitecol-
ored degree distribution~CDD! $pm%, in terms of which we
can define momentŝma&5(mpmma , etc. Such a distribu-
tion is conveniently described by its multivariategenerating
function

H~x!5(
m

pmxm, ~1!
7-2
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PROPERTIES OF RANDOM GRAPHS WITH HIDDEN COLOR PHYSICAL REVIEW E68, 026107 ~2003!
wherex5(x1 . . . xK) is a K-component vector of auxiliary
variables.

From H, the individualpm can be extracted by means
repeated differentiation atx50, while repeated differentia
tion at x51 yields thecombinatorial moments

Eab . . . 5]a]b . . . H~x51!, ~2!

where]a stands for the derivative with respect toxa . Thus,
the lowest moments becomeEa5^ma&, Eab5^mamb
2madab&, etc., generalizing the corresponding combina
rial moments of thetotal degree,̂ m&, ^m(m21)&, etc. Oc-
casionally, we will suppress indices and refer to t
nth-order combinatorial moment asE(n) . Thus,E(1)5$Ea%
5^m&, E(2)5$Eab%, E(3)5$Eabc%, etc. In particular, it is
frequently convenient to view the second-order tensorE(2) as
a matrix, denoted simply byE.

Upon summing over the indices independently, t
nth-orderscalar combinatorial moments result, denoted
E(n) . Thus, E(1)5(aEa5(a^ma&5^m&, E(2)5(abEab
5^m(m21)&, E(3)5(abcEabc5^m(m21)(m22)&, etc.

III. MODEL DEFINITIONS

Ensembles in CDRG are based onasymptotic models,
where a desired asymptotic behavior asN→` is specified.
For a given asymptotic model, finite graph ensembles can
defined.

A. Asymptotic CDRG model

An asymptotic CDRG model is defined as follows.
~a! Specify the desired color space, taken to

@1, . . . ,K# for some integerK>1.
~b! Choose a normalized asymptotic colored degree

tribution $pm%, with pm>0 and(mpm51.
~c! Choose a symmetricK3K color preference matrixT,

with real, nonnegative elementsTab>0, subject to the con-
straint

(
b

Tab^mb&51. ~3!

The role ofT is to control the asymptotic symmetrize
color-specific distribution of edges:nab;N^ma&Tab^mb&,
wherenab denotes the number of edges connecting colora
and b. Constraint~3! is needed for the mutual consisten
between the asymptotic vertex and edge statistics—rou
speaking, it secures a matching butt for each stub.

Following Ref. @15#, we will for simplicity assume col-
ored degree distributions to be well behaved, such tha
moments of arbitrary order are defined. This excludes po
tails in the degree distribution—the particular complicatio
associated with extending CDRG tobroad-tailed distribu-
tions fall outside the scope of this paper, and will hopefu
be the subject of a future paper.
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B. Ensembles of finite graphs

Based on a given asymptotic model, we wish to defi
an ensemble of multigraphs or simple graphs with a giv
sizeN.

1. Multigraph ensembles—CDRG-m

The simplest and most straightforward way to define
ensemble of multigraphs of a given sizeN consistently with
a given asymptotic CDRG model is as follows. Fix the colo
specific vertex and edge counts,Nm and nab , as close as
possible to their expected values, i.e.,Nm'Npm and nab
'N^ma&Tab^mb&, such that they yield matching colore
stub and butt counts,(mNmma5(bnab5Ma'N^ma&. Then
place edges for each colora randomly pairing each of the
Ma stubs with a unique matching butt.

The result can be considered amicrocanonical ensemble
of multigraphs and was used in the original paper@15# as a
means to define an ensemble of simple graphs by projec
out the simple part. In this paper, we will consider a sligh
different multigraph ensemble where onlyN is fixed while
the other counts are allowed to vary. While being sligh
more elaborate to implement as a random graph gener
this grand canonicalensemble is more convenient for an
lytical purposes. The steps are as follows.

~1! For each of theN vertices, draw its colored degree
random from the asymptotic distribution$pm%. The result is
a random colored degree sequence, yielding a definite
countM, the expected value of which isN^m&. Repeat this
step untilM is even.

~2! Consider the entire set of (M21)!! pairings of theM
stubs and associate with each pairing a statistical we
given by the product of single-edge factors, where eachab
edge contributes a factor ofTab /N. Draw a pairing at ran-
dom from the resulting weighted distribution.

The weighted random pairing defines a natural colo
extension of the stub-pairing method, the configurat
model, as used in DRG@17#.

In the thermodynamic limit, the microcanonical and gra
canonical ensembles corresponding to the same asymp
model should be statistically equivalent. Indeed, whenN
→`, the distribution of colored degree countsNm in the
grand canonical ensemble becomes sharply peaked ar
the microcanonical valueŝNm&5Npm . A a result, the total
colored stub countsMa will be close toN^ma&, and as will
be shown below, this implies that the distribution of color
edge countsnab resulting from the weighted pairing become
sharply peaked around the microcanonical ensemble va
^nab&5N^ma&Tab^mb&. In the following section, we will
give a detailed analysis of the basic stub pairing statistic

2. Simple graph ensembles—CDRG-s

In Ref. @15#, a microcanonical ensemble of simple grap
was defined by projecting out the simple graph part from
microcanonical ensemble of multigraphs, as realized by
doing the random butt-stub pairing step until a simple gra
results.

Here, we shall instead consider a grand canonical
semble of simple graphs, defined by projecting out
7-3
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BO SÖDERBERG PHYSICAL REVIEW E68, 026107 ~2003!
simple part from the corresponding CDRG-m ensemble. It
can be realized, e.g., by repeatedly drawing a member o
latter until a nondegenerate graph results.

The efficiency of this method depends on the probabi
for a randomly drawn multigraph to be simple. This pro
ability is easily computed, as will be demonstrated below~in
the section on local characteristics!, where we will verify the
result given in Ref.@15#.

In Ref. @15#, it was also argued that several statistic
graph properties not directly involving the presence or
sence of degeneracies as measured in a CDRG ensemb
simple graphs were asymptotically identical to those of
underlying multigraph ensemble; we shall provide argume
that this is indeed the case.

IV. BASIC STUB STATISTICS

For the forthcoming analysis of local and global structu
properties of random graphs drawn from the grand canon
ensemble of multigraphs, an initial basic statistical analy
of the graph properties as seen from the point of view of
individual stubs is required.

A. Colored stub distribution

In a grand canonical CDRG-m ensemble, each vertexi
can be considered to have an independent random col
degreemi drawn from the asymptotic distribution$pm% ~ne-
glecting the slight modification due to the constraint of ev
M ). Hence, the vectorM5( imi of total colored stub counts
is essentially the sum ofN independent colored degree
which trivially results in theM distribution PM being cen-
tered around the expected stub count^M &5N^m&, with fluc-
tuations of O(N1/2) governed by the correlation matri
^MM Á&c5N^mmÁ&c .

For the derivation of more general properties ofPM , it
may be convenient to use its generating function, which
given byH(z)N5(MPMzM @22#, whereH(z) is the generat-
ing function forpm , as defined in Eq.~1!. FromH(z)N, PM
can be extracted as the coefficient forzM:

PM5 R dz

2p iz
z2MH~z!N, ~4!

where rdz/2p iz stands for)ardza/2p iza , denoting the
complex integration of eachza along a path encircling the
origin. For M close to its averageN^m&, the integral is as-
ymptotically dominated by the contributions from a sadd
point z'1, from which the asymptotic properties ofPM can
be derived in a saddlepoint approximation.

B. Stub pairing statistics

Next, we wish to analyze the result from the weight
random pairing of stubs. To that end, we note that for a gi
assignment of colored vertex degrees, the only thing imp
tant for the pairing step is the total stub countM5$Ma%
5( imi .

Denote by Z(M ) the total weight of the set of (M
21)!! possible stub pairings for a givenM . It is the sum
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over distinct pairingsp of the associated product of edg
weightsTab /N and can be written as follows:

Z~M !5(
p

)
pairs

Tab

N

5N2M /2M ! (
$nab%

)
a,b

Tab
nab

nab!
)

a

Taa
naa/2

naa!!
~5a!

5N2MM ! R dz

2p iz
z2Me(N/2)zÁTz, ~5b!

where the sum over$nab% is restricted to non-negative, sym
metric values with even diagonal and correct row sum
(bnab5Ma . The last form,~5b!, is obtained by Fourier ex-
panding the implicit Kroneckerd ’s for the row sum con-
straints.

So far, everything is exact. The complex integral form
Z(M ) can be estimated in a saddle point approximati
based on extremizing the associated ‘‘action,’’S(z)
5M• ln(z)2(N/2)zÁTz. Demanding a vanishing derivative
]za

S5M /z2NTz50, yields the equation for a saddle poi
as

M5Nz3~Tz!, ~6!

implicitly defining the saddle pointz(M ) ~up to a total sign,
really, but for evenM, the two yield identical contributions!.

For the particular choice ofM5N^m&, defining the ex-
pected value ofM , the relevant solution isz5^m&, yielding
for the total weight the asymptotic valueZ(M5N^m&)
;e2N^m&/2, where we have disregarded subexponential f
tors and assumedM to be even. The value ofZ(M ) for
slightly different arguments can then be estimated by not
that a small relative change inM yields a small relative
change inz, and leads to a small change in the value of t
actionS.

Thus, upon replacingM by a modified valueM̂5M1e,
the saddle pointz changes toẑ5z1d and the actionS

5S(M ,z) changes toŜ5S1e]S/]M1d]S/]z, evaluated at
M5N^m&, z5^m&, where thez derivative vanishes due to
the saddle point condition. Thus, to lowest order, the mo
fied value of the action is given byŜ5S1e ln(z). As a result,
the complex integral to leading order changes by a facto
z2e, and thus the total weightZ changes by a factor o
(M /Nz)e'1—i.e. not at all. This means thatZ(M ) has a
saddle point for M close to its expected value,̂M &
5N^m&.

C. Individual pairing probabilities

The asymptotic probability that an arbitrarily chosen p
of stubs will be connected in the random pairing, given th
colorsa,b, can be calculated as the ratio of the total weig
conditional on this connection and the unconditional tot
weight. The conditional weight is obtained by multiplyin
the factorTab /N for the clamped edge by the total weig
Z(M2ea2eb) of all pairings of the remainingM22 stubs,
7-4
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PROPERTIES OF RANDOM GRAPHS WITH HIDDEN COLOR PHYSICAL REVIEW E68, 026107 ~2003!
whereea denotes the unit vector along the positivea direc-
tion. This is to be divided byZ(M ); as argued above, theZ
ratio is asymptotically 1, and so the asymptotic probability
simply Tab /N.

Let us check this result for consistency: There areMb
stubs with colorb; each of these defines an equally proba
matching partner to a fixed stub of colora ~neglecting for the
casea5b, the asymptotically negligible possibility that th
two stubs be identical!, yieldingTabMb /N'Tab^mb& for the
probability that the pairing partner of an arbitrary stub
color a has color b. A final summation overb yields
(bTab^mb&51, expressing the correct normalization of t
asymptotic probabilities.

The argument is easily extended to yield the asympt
probability for an arbitrary finite number of clamped stu
pairs in the grand canonical ensemble of multigraphs,
given simply by the product of the corresponding edge f
tors Tab /N, with the relative error being of the order o
O(N21).

From these pairing probabilities, we can draw the triv
conclusion that the colored edge countsnab in a grand ca-
nonical CDRG-m ensemble asymptotically will be close t
the corresponding microcanonical ensemble val
N^ma&Tab^mb&; this can also be derived directly from Eq
~5!.

Conversely, it is easily realized that asymptotically ide
tical pairing probabilities hold for the microcanonical mul
graph ensemble, where the colored edge counts are fixe
nab;N^ma&Tab^mb&. Given an arbitrary pair of distinc
stubs with respective colorsa,b, the probability that they be
paired is the product of~1! the probabilitynab /Ma that the
first stub is chosen to belong to the group ofa stubs selected
to be paired with colorb, ~2! the corresponding probability
nab /Mb for the other stub, and~3! the probability 1/nab that
the first stub is paired with the second among thenab candi-
dates. Multiplying the three factors together yields the pr
ability nab /(MaMb);Tab /N.

V. LOCAL CHARACTERISTICS

Calculability of local as well as global graph character
tics in a model greatly simplifies the task of model inferen
from observed graphs. All local graph characteristics can
derived from the embedding counts of various small c
nectedsubgraphs. These are easy to measure in observ
graphs. The analysis given in the preceding section prov
the necessary tools for deriving rules for calculating the
ymptotically expected count distributions in a CDRG mod
We will first consider the case of a CDRG-m; the results for
that case can then be used to derive the corresponding re
for CDRG-s. Except where otherwise stated, the grand
nonical ensembles will be assumed.

A. Subgraph statistics I: Multigraph ensemble

1. Initial discussion

Given an arbitrary, possibly degenerate, small graphg
with v vertices ande edges, we wish to study the statistics
the numberng of distinct copies ofg found in a random
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graphG drawn from a CDRG-m ensemble, i.e., the numbe
of distinct subgraphs ofG isomorphic tog.

A subgraph ofG is defined as a subsetv of theN vertices
of G, together with a subsete of the edges amongv. Two
subgraphs are considered distinct if they have differentv or
differente. Note that a general subgraph is not necessarily
inducedsubgraph, wheree must be the entire set of edge
amongv. Thus, e.g., ifg lacks an edge between a pair
vertices, the corresponding pair in the target setv may well
be connected.

We are primarily interested in connectedg, but we will
allow ourselves to consider also cases whereg is not con-
nected. Let us begin by considering a few simple examp
explicitly.

Single vertex(•). Let g be asingle vertex with no edges.
Then, we must haveng5N, since there areN ways to
choose a single target vertex inG.

Unconnected pair of vertices(••). Let g consist oftwo
vertices and no edges~so g is not connected!. Then, ng

5N(N21)/2;N2/2, reflecting theN(N21) ways to choose
an ordered pair of vertices inG, while the symmetry ofg
under interchange of the two vertices makes the twoa priori
distinct orderings equivalent.

Connected pair(• –•). Let g be the graph consisting o
two vertices connected by a single edge. Again,g is sym-
metric under interchange of its two vertices, and the tar
pair v of vertices can be chosen inN(N21)/2 distinct ways.
Not all vertex pairs are connected, while others are multi
connected: A pair withk connections yieldsk distinct copies
of g. The average number of connections between an a
trary pair of vertices is the sum over color pairsa,b of the
average number ofab edges connecting them. Each vert
of the pair has a colored degree randomly drawn from$pm%.
For a given pairm,m8, there aremamb8 possible ways to
choose thea,b edge, each yielding a probabilityTab /N. Av-
eraging this over the colored degreesm,m8 yields
(mpm(m8pm8mamb8Tab /N5^ma&^mb&Tab /N. Finally, sum-
ming overa,b gives^m&ÁT^m&/N5^m&/N for the expected
number of edges between a randomly chosen pair of verti
Multiplying this by the number of ways to choose the pair
vertices yields (N/2)^m& for the asymptotically expected
number of copies; this is precisely the expected numbe
edges,̂ M &/2, as it must be, since every edge defines a d
tinct copy ofg.

2. Expected count for generalg

For a more general graphg, the expected count can b
computed by multiplying the number of ways (v

N) to choose
the vertex target setv by the expected number of copie
using a fixed target setv. The latter is obviously independen
of v when G is a random graph, and is the sum of the e
pected number of copies for each of the~naively v!) in-
equivalent orderings ofv, defined as the number of ways t
choose the target sete from the existing edges amongv ~e.g.,
an orderedk tuple of edges between a specific pair of ver
7-5
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TABLE I. Asymptotically expected counts of subgraphs in the form ofstars, chains, and simplecyclesof
arbitrary size as computed in a CDRG-m model and, for comparison, in a corresponding uncolored~DRG!
model. Thek-star consists of a single ‘‘hub’’ vertex connected to each ofk leaf nodes by a single edge. Th
symmetry factor ofk! is due to permutations of thek leaves. The factors for thek leaves have been simplifie
as described in the text. For both CDRG and DRG, the resulting expected count can be written asN^(k

m)&, as
may have been expected—each vertex inG with m>k stubs defines (k

m) copies; in this case, the expecte
count depends only on the plain degree distribution$pm%. Thek chain consists ofk vertices connected into
a chain byk21 edges. The symmetry factor of 2 is due to a flip of the entire chain. The two leaf facto
the end points have been simplified. As a result, the four-chain is the first chain where the expecte
shows a nontrivial dependence onT, distinguishing CDRG from plain DRG for which the expected cha
counts form a simple geometric series. Thek cycle consists ofk vertices connected into a closed loop byk
edges. The symmetry factor 2k is due to flipping (→2) and rotating (→k) the vertex order in the cycle.

Subgraph k Vertices Edges Difference Symmetry factor
g range v e v2e Sg ^ng&CDRG ^ng&DRG

k-star k>2 k11 k 1 k! NE(k) /k! NE(k) /k!
k-chain k>2 k k21 1 2 N

2
1ÁE(TE)k231

N

2
E(E/^m&)k23

k-cycle k>3 k k 0 2k Tr(TE)k/(2k) (E/^m&)k/(2k)
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ces inv can be chosen inn!/(n2k)! distinct ways, if the
target pair inv is connected byn edges!.

In addition, if g has a nontrivial isomorphism group~in
terms of permutations of vertices as well as permutations
flips of edges!, the result must be divided by asymmetry
factor Sg , given by the order of this group. It consists of tw
factors: One is given by the order of thevertexpermutation
symmetry ofg and the other by the order of the group
permutations and flips ofedgeswith fixed vertices leavingg
invariant, yielding a factor ofn! for each pair of distinct
vertices ing connected byn edges and a factor ofn!2n

5(2n)!! for each vertex withn tadpoles ~requiring 2n
stubs!.

This results in the following‘‘Feynman’’ rules for the cal-
culation of the asymptotically expected numberng of copies
of an arbitrary small graphg in a large random graphG
drawn from a CDRG-m ensemble:

~1! Label each stub ing with an independent color index
~2! Associate with every vertex ing with n stubs labeled

a,b, . . . a factor given byN times the corresponding com
ponentEab . . . of the nth order combinatorial momentE(n) .

~3! Associate with each edge ing a factorTab /N, where
a,b are the color labels of the connected stubs.

~4! Multiply together all vertex and edge factors, and su
the result over the stub colors.

~5! Divide the result by the proper symmetry factorSg to
yield the expected count^ng&.

Sketch of proof. The individualvertex factordecomposes
into a factor ofN for the number of ways to choose the targ
vertex inG and a factorEab . . . , which takes some explain
ing. Consider a vertex ing with two stubs, assigned color
a,b. The colored degreem of the target vertex is drawn from
pm , and the number of ways to pick two stubs with corre
colors, givenm, is mamb if aÞb andma(ma21) if a5b.
Averaging overm yields Eab . The result generalizes to a
arbitrary number of stubs.

Theedge factor Tab /N represents the individual stub-stu
connection probability as derived in the preceding section
02610
d

t

t

it

ultimately stems from the corresponding factor in t
weighted random pairing involved in the definition of th
grand canonical ensemble.

The vertex part of thesymmetry factorsimply stems
from the fact that the existence of a vertex permutat
symmetry of g implies a reduction of the naive numbe
N(N21)•••(N2v11);Nv of inequivalent choices of or-
dered target setsv. Similarly, the edge part reflects th
equivalence of naively distinct edge target setse for the same
v, differing only by the interchange of edges connecting
same pair of vertices or by a flip of a single edge connect
a vertex to itself.

The same asymptotic rules can be derived for the cas
the microcanonical multigraph ensemble using similar ar
ments.

In Table I, the expected counts are given for subgraph
the form of chains, stars, and simplecycles of arbitrary
length for a CDRG-m model and for a plain DRG mode
~CDRG-m restricted to a single color!, for comparison. Note
the simplification occurring in the expression for the e
pected count for eachleaf node with a single connection, du
to the identityT^m&51: The vertex factor for the leaf and
the single-edge factor gives upon summation of the co
label assigned to the single stub a factor(aN^ma&Tab /N
[1, and their only effect is to increase the degree of
moment associated with the neighboring vertex by adding
index b that is simply summed over.

3. Scaling withN and edge correlations

Of obvious interest is howng scales withN. The rules for
the calculation of the expected count yield a factor ofN for
each vertex and a factor ofN21 for every edge, so the tota
power of N is v2e, which can also be expressed asthe
number of mutually disconnected components ing, minus
the number of loops ing. For a connectedg, this yields 1
minus its number of loops. Thus, ifg is a tree, the expected
number of copies scales asO(N), while for aone-loop con-
nectedg, the expected number scales asO(1); for anycon-
7-6
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nectedg with more than one loop there are asymptotica
no copies at all, since the expected number is suppresse
powers ofN.

Let us demonstrate with a few simple examples the
creased correlation possibilities in CDRG models as oppo
to a plain DRG model. First, we compare the counts
triangles ~three-cycles,D), wedges~three-chains,L), and
edges~two-chains,I ). In a CDRG ensemble, their respectiv
expected counts are

^nD&5
Tr~TE!3

6
, ~7a!

^nL&5
NE

2
, ~7b!

^nI&5
N^m&

2
. ~7c!

A plain DRG ensemble yields an identical expression
^nL& as well as for̂ nI&, while the triangle count become
^nD&DRG5E3/(6^m&3), yielding the relation

^nD&DRG5
^nL&3

6^nI&
3

, ~8!

absent in a generic CDRG ensemble.
Similarly, the expected k-chain count is ^nk&

5N1ÁE(TE)k231/2. In plain DRG, this simplifies to a geo
metric series,NEk22/(2^m&k23), which again can be ex
pressed in terms of the wedge and edge counts:

^nk&DRG5^nL&k22^nI&
32k, ~9!

whereas in CDRG, this strict relation is absent.
A popular edge correlation measure in the literature is

so calledclustering coefficient C, defined as the probability
that two randomly chosen neighbors of a random vertex
connected@18,19#. In not-so-sparse random graph mode
with an excessive amount of triangles, as can be anticip
to result with a power tail in the degree distribution or
models based on an underlying regular structure,C can attain
a finite value. This is not the case in the type of models
are considering here, and we expectC to decrease as
O(N21). We can estimateC by comparing the expecte
counts for triangles~three-cycles! and three-chains. Their ra
tio multiplied by 3 gives the estimateC5Tr(TE)3/(NE).
While this indeed scales asO(N21), the finite numberNC
has a nontrivial dependence onT, allowing it to deviate from
the DRG value ofE2/^m&3.

These examples serve to illustrate the role of the hid
color in enabling a nontrivial edge correlation structure a
in lifting the simple relations between different subgra
counts present in DRG.

4. Beyond expected counts: Distribution shape

The expected count^ng& of a given subgraphg gives only
partial information on the count distribution. Of interest a
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also the actual shapes of the count distributions, as wel
the correlations between different subgraph counts.

A first step in this direction is given by considering th
expectedsquared count̂ng

2& for a fixed graphg. The count
itself consists of a sum over embedding positions, and so
squared count is given by summing over two independ
embedding positions, which can be reorganized as a
over the relative position of the two copies as defined b
vertex and edge coincidences, and a sum over theabsolute
embedding position of the resulting composite graph.

The key point is that the contribution tông
2& from each

possible configuration of the composite graphg2 is given by
its naive expected count^ng2

& as a subgraph ofG, multiplied

by the number of distinct ways to combine the two cop
into g2. The multiplication by the number of ways to obta
g2 compensates, e.g., for the extra twofold symmetry ty
cally arising in g2, related to the interchange of the tw
copies.

Let us consider the case of a connectedg being a tree or
having a single loop, and do a brief analysis of the poss
scaling properties of the expected count^ng2

& of the com-

bined graphg2.
For a connectedg, the expected embedding count sca

asO(Nv2e), yielding O(N) for a tree andO(1) for a one-
loop graph. When combining two copies ofg into g2, they
may overlap in a common subgraph, theoverlap graph, with
edge and vertex countseo ,vo . Then, the combined graphg2
will have vertex countv252v2vo and edge counte252e
2eo , and its expected count will scale asO(N2v22e2vo1eo).

If g is a tree, its only possible overlap graphs are fores
with vo2eo>0, with equality only for the empty subgraph
This means that the leadingO(N2) contribution to ^ng

2&
comes entirely from the case where the two copies ofg are
completely disjoint, yielding a leading contribution to^ng

2&
matching that of̂ ng&2, while the remaining contributions
scale at most asO(N). As a result, the standard deviation
the g count scales at most asO(N1/2), as compared to the
O(N) behavior of the expected count, yielding an asympto
cally sharp distribution for the correspondingintensiveentity,
the count densityrg5ng /N.

If g has asingle loop, we havev2e50 and the expected
count is finite. Then, we are interested in contributions
^ng

2& scaling at least asO(1), requiringvo2eo<0. Hence,
the only interesting overlap graphs between the two copie
g are theempty graphand connected one-loop graphs~in-
cluding the entireg) where the two copies ofg share the
loop part~possibly rotated or flipped! both yieldingvo2eo
50. There are two possibilities here.

If g consists of abare loopwithout decorations, the only
interesting contributions tông

2& are those from cases wher
the two copies are completely disjoint or completely iden
cal, yielding^ng

2&5^ng&21^ng& to leading order. The argu
ment can be generalized to higher moments ofng , showing
that the asymptotic distribution of theng is Poissonianfor
suchg.

Alternatively, if g consists of adecorated loop, i.e., a
single loop with attached tree decorations, there are a
7-7
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tional contributions tô ng
2& to leading order, due to configu

rations ofg2 where the two copies ofg share the loop bu
not all of the decorations; as a result, the asymptotic dis
bution of ng fails to be Poissonian and is typically wider.

5. Count correlations

In a similar way, thecorrelation between the counts fo
two distinct small graphs,g andg8, say, can be analyzed b
considering the expected value of the product of their cou
^ngng8&. Again, this can be seen as a sum over their rela
embedding positions and over the absolute position of
combined graph.

If both graphs aretrees, the leading contribution to
^ngng8& comes from cases where the two subgraphs are c
pletely disjoint.

In the mixed caseof one graph being a tree, the other
connected one-loop graph, the leading contribution
^ngng8& again comes entirely from the completely disjoi
case. The argument can be generalized to higher mom
indicating the asymptotic lack of correlations between
two counts.

The final case of interest is whenboth graphs are con-
nected one-loop graphs. If their loopsdiffer in length, the
leading contribution tôngng8& again stems entirely from th
completely disjoint cases, and the counts are asymptotic
uncorrelated. If the loops have thesame length, however,
there are additional contributions from cases where the o
lap graph contains the loop, yielding a positive correlat
between the two counts.

For a discussion of subgraph counts in the context of
~not necessarily sparse! classic model, based on the concep
of balanced and strictly balanced subgraphs, see, e.g., C
4 of Ref. @2#.

B. Subgraphs statistics II: CDRG-s

Next, we wish to study the statistics of small subgra
counts in a CDRG-s ensemble, obtained as the restriction
simple graphs of the corresponding multigraph ensem
where simple means the absence of loops of length one
two.

Thus, we are led to study the distribution of such loops
the multigraph ensemble, as represented by the subg
counts wheng is apure one-cycle~vertex with a tadpole! or
a pure two-cycle~two vertices connected by a double edg!.
The relevant results from the preceding section as applie
these counts imply the following for a random graphG from
a CDRG-m ensemble.

~i! The expected number̂n1& of one-cycles inG is as-
ymptotically given bya[Tr(TE)/2, and the count asymp
totically follows a Poissonian distribution, Prob(n1)
5e2aan1/n1!.

~ii ! The expected number^n2& of two-cycles inG is as-
ymptotically given byb[Tr(TE)2/4, and the count asymp
totically follows a Poissonian distribution, Prob(n2)
5e2bbn2/n2!.

~iii ! The one-cycle and two-cycle counts are asympt
cally uncorrelated with each other as well as with the co
02610
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of any small simple graphg in the form of a tree or a one
loop connected graph.

There are two important implications for the correspon
ing CDRG-s ensemble.

~1! The probability that a random graph from the asso
ated multigraph ensemble be simple is asymptotically giv
by

Prob~simple!5e2a2b, ~10!

as claimed in Ref.@15# without a detailed proof.
~2! The count distribution for a simple small subgraphg

in a random graph drawn from a CDRG-s ensemble is to
leading orderasymptotically identicalto the corresponding
distribution in a random graph drawn from the correspond
CDRG-m ensemble.

As a result, the computational rules for subgraph cou
given in the preceding section apply without modificati
also to CDRG-s, for the asymptotically expected subgrap
counts of small simple graphs to leading order. For anon-
simple g, the count will, of course, vanish identically—
simple graph has only simple subgraphs.

VI. GLOBAL PROPERTIES

The original CDRG paper@15# contained a brief generat
ing function analysis of the asymptotic size distribution
connected components~clusters!. Here, we give a more de
tailed derivation, combined with a more elaborate analysis
the result.

A. Connected component statistics

Consider a large random graphG drawn from an arbitrary
CDRG-m ensemble. LetPn be the distribution of the numbe
of vertices 0<n,` of a cluster as revealed by starting fro
a random vertex inG and recursively revealing neighbors o
previously revealed vertices. Letg(z) be its generating func-
tion,

g~z!5(
n

Pnzn. ~11!

At any finite stage in the revelation process, loops in
subgraph revealed so far are suppressed with factors ofN.
Thus, in the thermodynamic limit, we expect the revea
subgraph, as long as it is finite, to form a tree, and as a re
the following analysis can be expected to apply equally w
to the corresponding ensemble ofsimple graphs.

In terms of the generating functionH(x) for $pm%, as
defined in Eq.~1!, g(z) can be expressed as

g~z!5zH„h~z!… ~12!

in terms of the set of similarly defined generating functio
ha(z) for the number of vertices in the subtree revealed
following the edge emanating from a random stub of giv
color a. The rationale behind Eq.~12! is that the initial vertex
has a random colored degreem drawn from the distribution
pm . This yields a factor ofz for the initial vertex and a factor
7-8
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of ha(z) for each of itsma stubs of colora; summing the
result overm, weighted withpm , yields Eq.~12!.

The edge functionsha(z) must satisfy the recursive equa
tions,

ha~z!5z(
b

Tab]bH„h~z!…, ~13!

following from a similar argument: An edge emanating fro
a stub of colora has the colorb in the other end with prob-
ability Tab^mb&, and is then attached to a vertex with color
degreem with probability pmmb /^mb&. This yields a total
factor ofTabmbpm . Throw in a factor ofz to account for that
vertex and a factor ofhc(z) for each subtree reached via on
of its remainingmc2dcb stubs of colorc; finally, summing
over b andm yields Eq.~13!.

B. The phase transition and the emergence of the giant

Of particular interest is the result forz51. The recur-
rence Eq.~13! for h(z) for the case ofz51 possesses
trivial fixed pointh(1)51, yieldingg(1)51, expressing the
conservation of probability. However, this fixed point repr
sents the physical solution only if it is stable, as determin
by the JacobianJ associated with the linearized recurrence
the neighborhood of the fixed point.J has the components

Jab5(
c

TacEcb⇔J5TE ~14!

in terms of the matrixE of second-order combinatorial mo
ments. If all eigenvalues ofJ5TE are less than unity, the
trivial fixed point h(1)51 is stable, and the revelation a
ymptotically corresponds to a subcritical branching proce
always yielding finite trees.

Otherwise, the trivial fixed pointh(1)51 is unstable and
will repel the iterates of the recursion, Eq.~13!. This signals
that the asymptotic branching process is supercritical, wi
finite probability of producing infinite trees. In such a case
nontrivial fixed point will appear and attract the iterate
yielding a solution withha(1),1, implyingg(1),1 by vir-
tue of Eq. ~12!. The corresponding probability deficit
2g(1) is interpreted as being due to the existence of agiant
component, and measures the finite probability that the ra
domly chosen vertex belongs to the giant, asymptotica
containing a fraction 12g(1) of the vertices.

In analogy to the case of a single color, i.e., DRG, t
transition is typically second order, being due to an initia
unstable, nontrivial fixed point passing the trivial one wh
they exchange stability characters—a transcritical bifurca
in the language of dynamical systems.

C. Duality

For asupercriticalmodel, the solution forg(z) resulting
from Eq. ~12! for the stable fixed point of the recursion, E
~13!, corresponds to a generating function for the contrib
tions from finite clusters only, and can be shown to emul
another, subcritical CDRG model—thedual model—as fol-
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lows. Define properly normalized functionsĝ(z),ĥa(z) in
terms of the stable solutionsg(z),h(z) as

ĥa~z!5
ha~z!

ha~1!
, ~15a!

ĝ~z!5
g~z!

g~1!
. ~15b!

These will then satisfy@by rewriting Eqs.~12! and ~13!#

ĝ~z!5zĤ„ĥ~z!…, ~16a!

ĥa~z!5z(
b

T̂ab]bĤ„ĥ~z!…, ~16b!

whereĤ(x) and T̂ are given by

Ĥ~x!5
H„h~1!3x…

H„h~1!…
, ~17a!

T̂ab5
1

ha~1!
Tab

1

hb~1!
. ~17b!

They describe thedual CDRG model that is subcritical by
definition: The stable fixed point is mapped toĥ(1)
51⇒ĝ(1)51. The corresponding transformed CDD is o
tained from the original one by a geometric transform,p̂m
}pmh(1)m. This duality has analogs in other sparse mode
such as DRG~trivially !, IRG @8#, and the classic model@2#.

VII. REDUNDANCY

A CDRG model defines a unique ensemble of graphs. T
opposite is not generally true—there is a built-in redundan
in the CDRG description, such that several models may
scribe one and the same graph ensemble, as we will
demonstrate, based on the local as well as the global pro
ties of the graphs in a CDRG ensemble, as analyzed in S
V and VII above.

Consider a given asymptotic CDRG model and defin
transformed model by using a stochastic matrixU, U151, to
define transformedH andT as

Ĥ~x!5H~Ux!, ~18a!

T̂5U21TU2Á. ~18b!

This transform conserves the CDD normalization,H(1)
51, and leaves form invariant the constraint onT, Eq. ~3!.

It also leaves invariant the recursive relations, Eq.~13!,
for the generating functionsh(z) for the size of a subtree
found by following an edge starting from a stub of defin
color, if h(z) is transformed toĥ(z)5U21h(z). This leaves
g(z) invariant by virtue of Eq.~12!, and thus will not affect
the observable distribution of component sizes$Pn%.

As for the local properties in the form of expected sm
subgraph counts, also these are left invariant, since the c
7-9
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BO SÖDERBERG PHYSICAL REVIEW E68, 026107 ~2003!
putational ~Feynman! rules given in Sec. V A 2 invariably
yield expressions in the form ofcontractionsbetween the
color indices of combinatorial momentsE(n) , on the one
hand, and those of the color preference matrixT, on the
other.

The transform can be interpreted as achange of basisin
color space, such thatUab̂ gives the probabilityPb̂ua that the
original colora corresponds to the transformed colorb̂.

This suggests the existence of a continuous symm
group, ;SL(K21), for the class of CDRG models. O
course, we have to be careful to stay in the physical regi
with non-negative values for$Tab% and$pm% ~but not neces-
sarily for $Uab% themselves!, which restricts the possible
transforms and prevents the class of transformations to f
a group. Nevertheless, it implies that CDRG consists
equivalence classesof models, related by transformations
the type~18a! and ~18b!.

One can consider even more general transformatio
where also the number of colorsK is changed, requiring a
non squareU. This enables the reducibility under certa
conditions of a model to an equivalent model with a sma
color space.

VIII. SUBCLASSES EQUIVALENT TO OTHER MODELS

A. DRG

The restriction of CDRG to a single color,K51, trivially
yields DRG, where a plain degree distribution$pm% is given,
while T reduces to a numberT, constrained to equal^m&21

by virtue of Eq.~3!.
More generally, a DRG model effectively results as so

asT has rank 1, in which caseT takes the form of a direc
product, forced to equalTDRG51^m&211Á, with all compo-
nents equal. This prevents the stub colors from affecting
stub pairing statistics, resulting in a completely random,
biased stub pairing.

B. IRG

Next we wish to identify the CDRG subclass correspon
ing to IRG. To that end, consider the restriction of CDRG
ensembles of simple graphs with a colored degree distr
tion given by a mixture of multivariate Poissonians

pm5(
i 51

L

r i)
a

exp~2Cia!Cia
ma/ma! ~19!

equivalent to

H~x!5(
i 51

L

r iexp@Ci•~x21!#, ~20!

for someL>1, where each term in the sum overi corre-
sponds to a non-negative weightr i times a normalized mul-
tivariate Poissonian with colored degree average^m& i5Ci
5$Cia%, with the weights summing up to unity,( i r i51.

In Ref. @15#, the asymptotic equivalence of such an e
semble to an associated IRG ensemble was shown, base
an analysis of the Eqs.~12! and ~13! for the cluster size
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distribution. IRG~inhomogeneous random graphs! @8# is de-
fined as a colored extension of the classic model of sim
graphs, where a distinct ensemble of graphs of sizeN is
defined in terms of colored vertices, where each vertex
independently assigned a colori P@1, . . . ,L# according to
an arbitrary but fixed distribution$r i%. Then for every pair of
vertices, the corresponding edge is independently real
with a color-dependent probability given byci j /N, wherei , j
are the colors assigned to the vertices.

For such a model, a generating function analysis of
cluster size distribution can be done, analogous to the
represented by Eqs.~12! and ~13!. The result@8# is that for
IRG, the generating function for the cluster size distributio
g(z) as defined in Eq. 11, can be written as a weighted s

g~z!5(
i

r igi~z!, ~21!

wheregi(z) is the generating function for the size distrib
tion, conditional on the IRG vertex colori of a randomly
chosen initial vertex. These satisfy a set of recursive relati
amounting to

gi~z!5zexpS (
j

ci j r j@gj~z!21# D . ~22!

As shown in Ref.@15#, by defininggi(z)5zexp$(aCia@ha(z)
21#% and ci j 5(abCiaTabCjb , Eqs. ~12! and ~13! can be
written in the form of Eqs.~21! and ~22!, showing the
asymptotic equivalence from the point of view of cluster s
distributions.

An interesting question then is whether this relation p
sists when considering small subgraph counts. In the ru
for the computation of the asymptotically expected count
a small subgraphg, as defined in Sec. V, each vertex ing
with n stubs is associated with a factor ofNE(n) . For a CDD
as defined by Eq.~20!, the combinatorial momentE(n) sim-
plifies to ( i 51

L r iCi
sn , whereCi

sn stands for the outer~ten-
sor! product ofn factors ofCi , one for every stub. Absorb
ing these stub factors into the edge factor,T/N, yields a set
of Feynman rules with an independent IRG colori for each
vertex, acquiring a corresponding factor ofNri and a factor
of Ci

ÁTC j /N5ci j /N for every edge connecting a pair o
vertices with respective IRG colorsi , j . The product of ver-
tex and edge factors should be summed over the IRG co
i , j , . . . and theresult divided by the usual symmetry facto
Sg .

Indeed, these are the correct rules for the expected sim
subgraph counts in an IRG model, as can be derived u
simple arguments; this confirms the asymptotic equivale
between the two models previously indicated by the clus
size analysis.

C. Other subclasses

As a special case of the IRG subclass, a CDRG-s en-
semble with a CDD in the form of a single multivariate Po
sonian, as defined by Eq.~20! with a single term,H(x)
7-10
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5exp@C•(x21)#, is asymptotically equivalent to the class
model with the parameter valuec5CÁTC5CÁ

•15(aCa .
Another interesting subclass of CDRG is defined by

restriction to models withmonochromevertices @10#, such
that for each vertex all its stubs are forced to have the s
color. It is a trivial exercise to derive the rules for subgra
counts as well as the equations for the generating func
g(z) for the cluster size distribution in such an ensemble

In fact, the monochrome subclass is sufficient for sp
ning IRG, since for a given IRG model as defined
$ci j %,$r i%, one can always find an associated CDRG mo
with the identical color space by using adiagonal matrix,
Cia5Cid ia with Ci5( j ci j r j . This yields an equivalen
monochrome CDRG model defined byTi j 5ci j /(CiCj ) and
H(x)5( i r iexp@Ci(xi21)#.

IX. CONCLUDING REMARKS

We have considered and analyzed a recently sugge
general class of ensembles, CDRG, of sparse random gra
based on a hidden coloring of stubs. We have extended
formalism to incorporate ensembles of multigraphs~CDRG-
m), in addition to the originally considered ensembles
simple graphs~CDRG-s).

A distinct random graph model can be defined asympt
cally by specifying a colored degree distribution$pm%, con-
trolling the distribution in the number and colors of the co
nections of a node, and a color preference matrixT,
governing the relative tendency for connections betw
stubs with definite pairs of colors. Based on such
asymptotic model, an ensemble of simple graphs or mu
graphs of a given size can be defined.

For such models, we have demonstrated the calculab
of local as well as global observable structural propert
important for the anticipated use of the formalism as a tar
for model inference based on the observed properties of r
world networks.

Local graph characteristics can be represented by the
tistics of small subgraph counts. We have derived a se
simple rules for calculating the asymptotically expect
count of an arbitrary small graph and demonstrated
equivalence between the two types of ensembles~of simple
or multigraphs! as far as simple subgraphs counts are c
cerned. We have also discussed the shapes of the coun
tributions and shown that a Poissonian distribution res
asymptotically only for simple cycles. By comparing the e
pected counts in DRG and CDRG of certain simple s
graphs, we have demonstrated the role of the hidden colo
in enabling a nontrivial edge correlation structure.

Global properties have been exemplified by the statis
02610
e

e

n

-

l

ed
hs,
he

f

i-

-

n
n
i-

ty
s,
et
al-

ta-
of

e

-
is-

ts
-
-

ng

s

of cluster sizes, for which we have performed a detai
analysis using generating function techniques. The anal
shows that an arbitrary CDRG model displays a percolat
threshold at a well-defined critical hypersurface in parame
space, above which a giant component appears containi
finite fraction of the vertices in the thermodynamic limit. W
have also demonstrated for a supercritical model the e
tence of a dual model—an associated subcritical model
scribing the nongiant part.

The algebraic properties of the equations involved in b
the local and global analysis reveal a redundancy~or sym-
metry! in CDRG, such that several superficially distin
models describe the same observable ensemble of gra
This redundancy can be seen as being due to the possib
of a change of basis in the abstract color space.

The rules for the computation of expected subgra
counts have a form strongly reminiscent of Feynman ru
for perturbative calculations in statistical field theory, ind
cating a relationship between CDRG models and field th
ries, in analogy to the case for DRG@20#. Work is in progress
to explore such relations, and the results will be presente
a separate paper@21#.

The CDRG class of random graph models is very gene
and contains several previously studied models and cla
of models as special cases. Its structure is also such th
should admit a straightforward generalization, e.g., to mod
of directed graphs. While CDRG so far has been conside
only for degree distributions with exponential fall-off fo
large degrees, it should be extendable to power-behaved
gree distributions if proper care is taken. The key obsta
~inherited from DRG! is that in such a case the higher m
ments of the~colored! degree distribution diverge, which
makes some observables—in particular, for CDRG-s—very
sensitive to the precise definition of the ensembles.

Anticipating that the formalism can be extended as in
cated above, a few fundamental questions remain to be
swered.

~1! Is the resulting class ‘‘complete,’’ i.e., does it span
every reasonable model of sparse, truly random graphs
not, how generalize it?

~2! Is it unnecessarily general, i.e., can an arbitrary CDR
model be reformulated in a simple way entirely in terms
observable graph properties, without utilizing hidden va
ables such as color?
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