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Properties of random graphs with hidden color
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We investigate in some detail a recently suggested general class of ensembles of sparse undirected random
graphs based on a hidden stub coloring, with or without the restriction to nondegenerate graphs. The calcula-
bility of local and global structural properties of graphs from the resulting ensembles is demonstrated. Cluster
size statistics are derived with generating function techniques, yielding a well-defined percolation threshold.
Explicit rules are derived for the enumeration of small subgraphs. Duality and redundancy is discussed, and
subclasses corresponding to commonly studied models are identified.
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[. INTRODUCTION served properties of real networks to be meaningful, a suffi-
ciently general formalism is desirable, where more specific
Numerous phenomena in physics, molecular biology, somodels appear as special cases of one and the same general
cial sciences, and information technology can be described inlass of graph ensembles.
terms of networks, where the nodes represent elementary In a recent papefl5], a promising candidate for such a
units such as spins, genes, proteins, people, or computergeneral formalism was proposed; it will be referred to as
while the links describe their interaction structure. The for-CDRG (for colored degree-based random grapltss based
mation process of these networks typically is not entirelyon a hidden coloringof stubs (incidence points of edges
deterministic, but involves stochastic components, and thepon a vertexand a specification of the colored stub distri-
resulting networks can be viewed aandom graphs-  bution of vertices as well as edges. This approach admits a
random members of statistical ensemblef graphs. unifying formalism for models of symmetric, truly random
We are primarily interested itruly randomgraphs, with-  graphs that arsparse(typical degrees are finite and do not
out any prior distinction between individual nodes or groupsgrow with the graph sizé\).
of nodes, such as an underlying lattice or other regular struc- The resulting class of random graph ensembles incorpo-
ture. An example is thelassic modebf Erdcs and Rayi[1],  rates several commonly studied models, such as the classic
with a single parametefin addition to the ordeN of the  random graph and random graphs with a given degree distri-
graph) in the form of a real numbeg, such that each possible bution [5,7,16,17, as well as vertex-colored extensions of
edge is independently and randomly realized with a probabilthese[8,10]. Models with degree-biased edge distributions
ity p=c/N (in the sparse versignThe classic model has [9] also fit into this approach. Furthermore, although the ap-
been thoroughly studied in various versions, static as well aproach in its present form is restricted to symmetric graphs,
evolving[2—4]. Its asymptotic N— ) degree distribution is it has a natural extension to directed graphs, which will be
Poissonian with averageand it displays ghase transition explored in forthcoming work.
in the form of a percolation threshold a1, above which The discussion in Ref15] was restricted to ensembles of
a giant component emerges containing a finite fraction of thsimple(nondegenerajeyraphs containing no cycles of length
nodes in the thermodynamic limit of lard& For a long time  one(self-couplings or tadpole¢®r two (double edges based
this and related models dominated the stage; however, theyn the restriction to simple graphs of an underlying ensemble
fail to describe the properties of most real-world networks. of multigraphswhere such degeneracies are allowed. Multi-
In the last decades, a multitude of alternative randongraph ensembles are interesting in their own right and more
graph models have been investigated, falling into two majoconvenient for analytical purposes. Here, we will consider
categories. In atatic modela statistical ensemble of random both types of CDRG ensembles, denoting by CDRGe
graphs is considered without bothering about how the graphestriction to the class of ensembles of simple graphs and by
were formed5-10]. A dynamical modehttempts to describe CDRG-+m the unrestricted class of multigraph ensembles. For
the random growth and evolution of a network, leading to argeneric ensembles of both types, we will present a theoretical
evolving ensemble of grapfg1-14. analysis of the properties of the resulting graphs, with an
Here, we will focus onstatic descriptionsof random emphasis on the analysis of observable local and global
graphs in terms of fixed statistical ensembles, bearing imgraph characteristics.
mind that the dynamics of real-world networks is not always The computability of structural properties is an important
directly observable, and the comparison of model and realityactor for the possibility of devising a systematic model in-
typically has to be done based on static properties as olference scheme based on the observed properties of real-
served in snapshots of real networks. world networks. Both types of ensemble admit an analysis of
For the inference of a particular model based on the obboth global and local structural properties of the resulting
random graphs. The global connectivity properties of a graph
can be analyzed in terms of the size distribution of connected
*Electronic address: Bo.Soderberg@thep.lu.se components, for which a generating function analysis was
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devised in Ref[15]. Local structural properties are associ- ing an asymptotiacdegree distribution{p,,}, from which a
ated with the frequencies of appearance of small subgraphspmpatible degree sequence can be determined for a given
also these will be shown to be asymptotically computable irgraph of sizeN with degree countdl,,=Np,,. Then, a ran-
both types of ensemble. dom compatible graph is chosen by means of a random stub
The remainder of this paper has the following structure. Inpairing (the configuration mode[5,17]). This approach will
Sec. II, we will define our notation and introduce basic con-be referred to as DRG, for degree-based random graphs.
cepts to be used in the rest of the paper. Questions regarding In another approach, IRGfor inhomogeneous random
ensemble definitions, for CDR@ras well as CDRGs, will graphg, a class of vertex-colored extensions of the classic
be discussed in Sec. Ill. Section IV contains a basic statistiodel has been considered, where each vertex is randomly
cal analysis of the ensembles as seen from the point of vie@nd independently assigned an abstract tiqudor) drawn
of the stubs. In Sec. V, we will discuss the statistics of theffom a given distribution, and where edge probabilities are
number of copies of an arbitrary small graph as a subgrapfllowed to depend on the connected pair of co[@is
of a random graph, and define rules for the computation of |n @ recent papel5], the philosophies behind DRG and
the asymptotically expected counts, pointing out difference4RG were combined in a novel approach, where a hidden
and similarities between CDR&and CDRGm ensembles.  Stub coloringwas used to define a very general class of en-
In Sec. VII, we will discuss the global properties of randomSembles with a given degree distribution. This approach,
graphs from CDRG ensembles, as revealed by a generatiffgPRG, forms the main subject of this paper.
function analysis of the cluster size distribution, extending Thus, we will consider stub-colored graphs, where each
the analysis presented in REE5]. Both the global and local stub independently carries an |_nternal characteristiidlden
analysis reveal a certain redundarisymmetry property of colorae[l,... K], to be considered gnobservable. The de_-
CDRG models, which forms the subject of Sec. VIII. In Sec.greem of a vertex then decomposes into the sum of contri-
IX, we will identify subclasses of CDRG ensembles corre-Putionsm, counting the stubs with a definite colar These
sponding to commonly studied models. Section X, finally,Subdegrees can be collected in & vector m
contains summary of our main results and some concluding (M1, - - . .Mk), to be referred to as theolored degreeof

remarks and speculations. the vertex. _
It is then natural to consider theolored degree sequence

of such a graph in terms of the numbétg of vertices with

A labeled graphconsists of a set of distinguishablerti- Accordingly, each edge connects a pair of colored stubs

ces(nodes, sites, pointswhich may be pairwise connected 2nd can be associated with a color pairk). We can then
by edges(links, bonds, lines also consider the count,,= ny, of edges for each color pair,

Unless otherwise stated, a graph is assumed Byimnet- where anab edge for practical reasons contributes both to

ric (undirected, such that edges have no particular directionNab @ndNy, (S0 diagonal elements;, are even _

(as opposed to digraph—or directed graph—where an edge . The total number_ of butts with colarin the graph is then
has a direction, pointing from one vertex to anojher given by Xyn,p; this must match the corresponding stub
A graph withN vertices is conveniently represented by its €0UNt Ma=2mMaNp, . In particular, the total butt count,
symmetricNx N adjacency matrixs. An elementS;; counts ~ >aplab, Must be everbeing twice the number of edgesnd

the number of edges between verticesdj; thus, each edge 1t Must equal the fotal stub countM=2,M,
contributes both tdS; and S; ; as a result each diagonal =22 amaNy, . Wg will find it convenient to collect the col-
elementS,; will be even, representing twice the number of 0€d stub counts in a vectdt =(My, ... My).
self-couplings of vertex In a simple graph, cycles of length  Throughout this paperK vectors will be denoted by
one(self-couplings or tadpol¢gnd two(multiple edgesare ~ (Mostly lower case, wittM being an exceptionbold sym-

absent; as a result, the diagonal element$ afe zero and b_0|5 ~°_’l_JCh aXE(Xb e Xk), in terms °f¥VhiCh an obvious
the remaining elements are restricted to the values 0 or 1. Aimplified notation will be usedx™=TIIx, ¢, m!=II,m,!,
multigraph may be simple or degenerate. etc. The uniformK vector (1 ...,1) will be denoted ad.

The degree(or connectivity m of a vertex is defined as Similarly, KX K matrices will be denoted by upper case bold
the number of edges connected to it, given by the corresymbols such a$={T,}, with matrix product indicated by
sponding row sunk;S;; ; the vertex can be considered as juxtaposition. Acomponent wis@roduct will be denoted by
possessingn stubs—points where a single-edge end point a cross ), as inxXm=(x;mq, ... XcMk). The transpose
(butt) is attached. of a matrix T will be denoted byT " and the matrix inverse

It is sometimes convenient to consider not only the verti-of the transpose by ~ .
ces, but also the edges, and indeed the individual stubs and We will be interested in models based on a defimibé

butts, as being distinguishable. ored degree distributiotCDD) {p.}, in terms of which we
The degree sequencef a graph is an ordered list 8  can define momentém,)==,p,,m,, etc. Such a distribu-
integers (y, . ..,my), describing the individual degrees of tion is conveniently described by its multivariagenerating

the N vertices. Alternatively, it can be summarized in termsfunction

of the degree countdN,,==;6(m,m;), counting the number

of vertices having degree. H(x)= E pX™, (1)
A commonly studied class of ensembles is based on giv- m

026107-2



PROPERTIES OF RANDOM GRAPHS WITH HIDDEN COLOR PHYSICAL REVIEW@B, 026107 (2003

wherex=(x; ...Xx) is a K-component vector of auxiliary B. Ensembles of finite graphs

variables. Based on a given asymptotic model, we wish to define

FromH, the individualp, can be extracted by means of g, ensemble of multigraphs or simple graphs with a given
repeated differentiation at=0, while repeated differentia- gj e N.

tion atx=1 yields thecombinatorial moments
1. Multigraph ensembles—CDRG-m

E.o =dadp ... .H(x=1), 2 The simplest and most straightforward way to define an

ensemble of multigraphs of a given sikleconsistently with

a given asymptotic CDRG model is as follows. Fix the color-
whered, stands for the derivative with respectstg. Thus, specific vertex and edge countd,, and n,,, as close as
the lowest moments becomé&,=(m,), E,,=(Mam, possible to their expected values, i.8l,~Np, and n,,
—Mydap), etc., generalizing the corresponding combinato-~N(m,)T,,(my), such that they yield matching colored
rial moments of theotal degree{m), (m(m—1)), etc. Oc-  stub and butt countE ,NyM,==pNap=Ma~N(m,). Then
casionally, we will suppress indices and refer to theplace edges for each colarrandomly pairing each of the
nth-order combinatorial moment &) . Thus,E)={E,} M, stubs with a unique matching butt.

=(m), E@2)={Ean}, E(z={Eand, €tc. In particular, it is  The result can be consideredricrocanonical ensemble
frequently convenient to view the second-order tefiggyas  of multigraphs and was used in the original pafis] as a
a matrix, denoted simply byE. means to define an ensemble of simple graphs by projecting

Upon summing over the indices independently, theout the simple part. In this paper, we will consider a slightly
nth-order scalar combinatorial moments result, denoted by different multigraph ensemble where oriis fixed while
Em - Thus, Eqy=Z.E.=2,(my)=(m), E(=2sEa, the other counts are allowed to vary. While being slightly
=(m(m—1)), Ez=ZapcEapc=(M(m—1)(m—2)), etc. more elaborate to implement as a random graph generator,

this grand canonicalensemble is more convenient for ana-
lytical purposes. The steps are as follows.
lll. MODEL DEFINITIONS (1) For each of theN vertices, draw its colored degree at

Ensembles in CDRG are based asymptotic models random from the asymptotic distributi({rpm}.' The resplt_ is
where a desired asymptotic behaviorNs-~ is specified. a random colored degree sequence, yielding a defm't? stub
For a given asymptotic model, finite graph ensembles can pgountM. thg expected value of which 8(m). Repeat this
defined. step untllM_|s even. B

(2) Consider the entire set oM —1)!! pairings of theM
stubs and associate with each pairing a statistical weight
A. Asymptotic CDRG model given by the product of single-edge factors, where ealch

. . , edge contributes a factor @f,,/N. Draw a pairing at ran-

'ég' gspirgﬁ;onfhgljgeiirn;gdeécllsogezgz(éeas {(;Iil((évr\]/s. to bedom from the resulting weighted distribution.

(1 K] for some integeK =1 ' The weighted random pairing defines a natural colored
DI : ' : . extension of the stub-pairing method, the configuration
(b) Choose a normalized asymptotic colored degree dis- :

tribution {p,,}, with p,,=0 and=,p,=1 model, as used in DRGU-]' . - :

mi» m= > mbm - . In the thermodynamic limit, the microcanonical and grand
. (c) Choose asyr_nmetnlsxK color preference matriA, canonical ensembles corresponding to the same asymptotic
with real, nonnegative elemeritg,=0, subject to the con- 40| should be statistically equivalent. Indeed, whén
straint —, the distribution of colored degree courits, in the
grand canonical ensemble becomes sharply peaked around
> Tap(my)=1. (3)  the microcanonical valuedN,)=Np,,. A a result, the total
b colored stub countM , will be close toN{m,), and as will

be shown below, this implies that the distribution of colored

edge countsi,, resulting from the weighted pairing becomes

sharply peaked around the microcanonical ensemble values

(Nap)=N(My)Tap(mp). In the following section, we will

give a detailed analysis of the basic stub pairing statistics.

The role of T is to control the asymptotic symmetrized
color-specific distribution of edges,p~N{(my)T (M),
wheren,, denotes the number of edges connecting cadors
and b. Constraint(3) is needed for the mutual consistency
between the asymptotic vertex and edge statistics—roughly
speaking, it secures a matching butt for each stub.

Following Ref.[15], we will for simplicity assume col- In Ref.[15], a microcanonical ensemble of simple graphs
ored degree distributions to be well behaved, such that alivas defined by projecting out the simple graph part from the
moments of arbitrary order are defined. This excludes powemicrocanonical ensemble of multigraphs, as realized by re-
tails in the degree distribution—the particular complicationsdoing the random butt-stub pairing step until a simple graph
associated with extending CDRG twoad-tailed distribu-  results.
tions fall outside the scope of this paper, and will hopefully Here, we shall instead consider a grand canonical en-
be the subject of a future paper. semble of simple graphs, defined by projecting out the

2. Simple graph ensembles—CDRG-s
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simple part from the corresponding CDRf-ensemble. It over distinct pairingsr of the associated product of edge
can be realized, e.g., by repeatedly drawing a member of theeightsT,,/N and can be written as follows:
latter until a nondegenerate graph results.

The efficiency of this method depends on the probability Z(M)=2 H E
for a randomly drawn multigraph to be simple. This prob- = pairs N
ability is easily computed, as will be demonstrated be{ow
the section on local characteristica’shere we will verify the
result given in Ref[15]. =N""2m Y ] ab, aa,, (53

_ L {napt a<b Nap'"a Naa:

In Ref. [15], it was also argued that several statistical
graph properties not directly involving the presence or ab- dz
sence of degeneracies as measured in a CDRG ensemble of =N"MM! fﬁ _,Z—Me(N/Z)ZTTZ, (5b)
simple graphs were asymptotically identical to those of the 2miz

nderlying multigraph ensemble; we shall provi rgumen . . .
'tjh;[eth?/s ig ingégdatﬁ:eiazz ble; we shall provide argume tKQ’Nhere the sum ovem,,} is restricted to non-negative, sym-

metric values with even diagonal and correct row sums,
Spnap=M,. The last form,5b), is obtained by Fourier ex-
panding the implicit Kronecke®'’s for the row sum con-

For the forthcoming analysis of local and global structuralStraints. o .
properties of random graphs drawn from the grand canonical SO far, everything is exact. The complex integral form of
ensemble of multigraphs, an initial basic statistical analysi€(M) can be estimated in a saddle point approximation,
of the graph properties as seen from the point of view of thdased on extremizing the associated “action3(z)

Nap Naa/2

IV. BASIC STUB STATISTICS

individual stubs is required. =M-In(2) — (N/2)z" Tz. Demanding a vanishing derivative,
ﬁZaS= M/z—NTz=0, yields the equation for a saddle point
A. Colored stub distribution as
In a grand canonical CDR@t ensemble, each vertex M=Nzx(Tz), (6)

can be considered to have an independent random colored

degreem; drawn from the asymptotic distributicfp,,} (ne-  implicitly defining the saddle poirg(M) (up to a total sign,
glecting the slight modification due to the constraint of evenreally, but for ever, the two yield identical contributions
M). Hence, the vectdwl = =;m; of total colored stub counts For the particular choice df1=N{m), defining the ex-
is essentially the sum oN independent colored degrees, pected value oM, the relevant solution ig=(m), yielding
which trivially results in theM distribution P, being cen-  for the total weight the asymptotic valug(M=N(m))

tered around the expected stub co(vity =N(m), with fluc-  ~e=NMm"2 \where we have disregarded subexponential fac-
tuations of O(N*?) governed by the correlation matrix tors and assumeM to be even. The value GEZ(M) for
(MM T)c=N(mm?). slightly different arguments can then be estimated by noting

For the derivation of more general propertiesRy, it that a small relative change iNl yields a small relative
may be convenient to use its generating function, which ighange inz, and leads to a small change in the value of the
given byH(2)N=3,Puz" [22], whereH(z2) is the generat- actionS.
ing function forpy,, as defined in Eq%a' FromH(2)", Py Thus, upon replacingl by a modified valueVl =M + ¢,
can be extracted as the coefficient & the saddle pointz changes toz=z+ 4§ and the actionS

dz N =S(M,Zz) changes t&= S+ edS/IM + 835/ 9z, evaluated at
Pum= #; omiz% H(2)", @ M= N{m), z=(m), where thez derivative vanishes due to
the saddle point condition. Thus, to lowest order, the modi-
where §dz/2miz stands forll,$dz./2miz,, denoting the fied value of the action is given =S+ eIn(z). As a result,
complex integration of each, along a path encircling the the complex integral to leading order changes by a factor of
origin. ForM close to its averagbl(m), the integral is as- z ¢, and thus the total weighZ changes by a factor of
ymptotically dominated by the contributions from a saddle-(M/Nz)¢~1—i.e. not at all. This means tha(M) has a
point z~1, from which the asymptotic properties Bf, can  saddle point forM close to its expected valug,M)
be derived in a saddlepoint approximation. =N(m).

B. Stub pairing statistics C. Individual pairing probabilities

Next, we wish to analyze the result from the weighted The asymptotic probability that an arbitrarily chosen pair
random pairing of stubs. To that end, we note that for a giverof stubs will be connected in the random pairing, given their
assignment of colored vertex degrees, the only thing imporeolorsa,b, can be calculated as the ratio of the total weight
tant for the pairing step is the total stub cowt={M,} conditional on this connection and the unconditional total
=>m;. weight. The conditional weight is obtained by multiplying

Denote by Z(M) the total weight of the set of M the factorT,,/N for the clamped edge by the total weight
—1)!! possible stub pairings for a givad. It is the sum Z(M—e,—eg,) of all pairings of the remaining/ —2 stubs,
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wheree, denotes the unit vector along the positaelirec-  graphI” drawn from a CDRGn ensemble, i.e., the number
tion. This is to be divided by (M); as argued above, the  of distinct subgraphs of isomorphic toy.
ratio is asymptotically 1, and so the asymptotic probability is A subgraph ofl” is defined as a subsetof the N vertices
simply T, /N. of I', together with a subset of the edges amonyg. Two

Let us check this result for consistency: There 8tg  subgraphs are considered distinct if they have diffeveat
stubs with colotb; each of these defines an equally probabledifferente. Note that a general subgraph is not necessarily an
matching partner to a fixed stub of com(neglecting for the  inducedsubgraph, where must be the entire set of edges
casea=b, the asymptotically negligible possibility that the amongv. Thus, e.g., ify lacks an edge between a pair of
two stubs be identicalyielding TapMp /N~Ta,(mp) for the  yertices, the corresponding pair in the target\setay well
probability that the pairing partner of an arbitrary stub of o connected.

;ol_?r a has 1C°|Or b. A fmzﬂ summation ovle_rb _yleld];s o We are primarily interested in connected but we will
bTap{My) =1, expressing the correct normalization of t €allow ourselves to consider also cases wheris not con-

asymptotic probabilities. . U .
The argument is easily extended to yield the asymptoticneCted' Let us begin by considering a few simple examples

o : - explicitly.
probability for an arbitrary finite number of clamped stub . . . .
pairs in the grand canonical ensemble of multigraphs, aﬁ_hSmgIe verte>§ )h Let 7_?\? a§|nglet\r/1ertex Wellilh no edgtjes
given simply by the product of the corresponding edge fac- en, we must haver, =N, since there aren ways 1o
tors T,,/N, with the relative error being of the order of CNOOSe a single target vertex in

O(N~Y). Unconnected pair of vertice@e). Let y consist oftwo
From these pairing probabilities, we can draw the trivialVertices and no, edgegso y is not connected Then, n,
conclusion that the colored edge counts, in a grand ca- = N(N—1)/2~N%/2, reflecting theN(N—1) ways to choose

nonical CDRGm ensemble asymptotically will be close to an ordered pair of vertices ifi, while the symmetry ofy

the corresponding microcanonical ensemble valuesinder interchange of the two vertices makes the apsiori

N{m_)Tpn({mp); this can also be derived directly from Eqgs. distinct orderings equivalent.

(5). Connected paii(*—). Let y be the graph consisting of
Conversely, it is easily realized that asymptotically iden-two vertices connected by a single edge. Againis sym-

tical pairing probabilities hold for the microcanonical multi- metric under interchange of its two vertices, and the target

graph ensemble, where the colored edge counts are fixed fir v of vertices can be chosen M(N—1)/2 distinct ways.

Nap~N(My) Tap(My,). Given an arbitrary pair of distinct Not all vertex pairs are connected, while others are multiply

stubs with respective coloesb, the probability that they be connected: A pair wittk connections yieldk distinct copies

paired is the product ofl) the probabilityn,,/M, that the  of 4 The average number of connections between an arbi-

first stub is chosen to belong to the groupadstubs selected  ary pair of vertices is the sum over color pairsh of the

to be paired with colob, (2) the corresponding probability average number aib edges connecting them. Each vertex

Nap/My, for the other stub, antB) the probability 1f,, that ¢ o o
, ) . X . pair has a colored degree randomly drawn f{qm}.
the first stub is paired with the second among nhg candi- For a given pairm,m’, there arem,m;, possible ways to

:zfﬁ;’ r’:/l El/t(lﬁ/llyl&gb; rleTtr;r/el\? factors together yields the prOb-Choose the,b edge, each yielding a probabilify,,/N. Av-
a a a .

eraging this over the colored degrean,m’ vyields

S mPmEm PmMaMi Tap/N=(m}{mp)T,,/N. Finally, sum-

ming overa,b gives{m) " T(m)/N=(m)/N for the expected
Calculability of local as well as global graph characteris-number of edges between a randomly chosen pair of vertices.

tics in a model greatly simplifies the task of model inferencemultiplying this by the number of ways to choose the pair of

from observed graphs. All local graph characteristics can b@ertices vyields K/2)(m) for the asymptotically expected

derived from the embedding counts of various small connymber of copies; this is precisely the expected number of

nectedsubgraphs These are easy to measure in observeqadgesy<M>/2, as it must be, since every edge defines a dis-
graphs. The analysis given in the preceding section provideg,. copy of y.

the necessary tools for deriving rules for calculating the as-

ymptotically expected count distributions in a CDRG model.

We will first consider the case of a CDR@®; the results for 2. Expected count for generay

that case can then be used to derive the corresponding results

for CDRGs. Except where otherwise stated, the grand ca- For a more general graph, the expected count can be

V. LOCAL CHARACTERISTICS

nonical ensembles will be assumed. computed by multiplying the number of wayg)(to choose
the vertex target set by the expected number of copies
A. Subgraph statistics I: Multigraph ensemble using a fixed target set The latter is obviously independent

of v whenT is a random graph, and is the sum of the ex-
pected number of copies for each of theaively v!) in-
Given an arbitrary, possibly degenerate, small graph equivalent orderings of, defined as the number of ways to
with v vertices anck edges, we wish to study the statistics of choose the target seffrom the existing edges amonge.g.,
the numbem,, of distinct copies ofy found in a random an orderedc tuple of edges between a specific pair of verti-

1. Initial discussion
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TABLE I. Asymptotically expected counts of subgraphs in the fornstafs chains and simplecyclesof
arbitrary size as computed in a CDRfBmodel and, for comparison, in a corresponding uncoldERG)
model. Thek-star consists of a single “hub” vertex connected to eack &af nodes by a single edge. The
symmetry factor ok! is due to permutations of theleaves. The factors for tHeleaves have been simplified
as described in the text. For both CDRG and DRG, the resulting expected count can be wiit{¢f)as as
may have been expected—each verteX'iwith m=k stubs defines) copies; in this case, the expected
count depends only on the plain degree distribufipf}. Thek chain consists ok vertices connected into
a chain byk—1 edges. The symmetry factor of 2 is due to a flip of the entire chain. The two leaf factors for
the end points have been simplified. As a result, the four-chain is the first chain where the expected count
shows a nontrivial dependence @n distinguishing CDRG from plain DRG for which the expected chain
counts form a simple geometric series. Theycle consists ok vertices connected into a closed loop lby
edges. The symmetry factokds due to flipping (~2) and rotating {-k) the vertex order in the cycle.

Subgraph  k Vertices Edges Difference Symmetry factor

Y range v e v—e S, (N,)core (n,)orc
kstar k=2 k+1 Kk 1 k! NE, /! NE, /k!
k-chain k=2 k k—1 1 2 ngE(TE)k’ﬁ gE(E/(m>)k’3
k-cycle k=3 k k 0 2k Tr(TE)/(2k)  (E/{m))¥/(2Kk)

ces inv can be chosen im!/(n—k)! distinct ways, if the ultimately stems from the corresponding factor in the
target pair inv is connected by edges. weighted random pairing involved in the definition of the
In addition, if y has a nontrivial isomorphism grougn ~ grand canonical ensemble. .
terms of permutations of vertices as well as permutations and The vertex part of thesymmetry factorsimply stems
flips of edgey the result must be divided by symmetry from the fact that the existence of a vertex permutation
factor S,, given by the order of this group. It consists of two Symmetry of y implies a reduction of the naive number
factors: One is given by the order of thertexpermutation N(N—1)---(N—v+1)~N" of inequivalent choices of or-
symmetry of y and the other by the order of the group of dered target sets. Similarly, the edge part reflects the
permutations and flips afdgeswith fixed vertices leavingy ~ equivalence of naively distinct edge target sefsr the same
invariant, yielding a factor oh! for each pair of distinct V. differing only by the interchange of edges connecting the
vertices iny connected byn edges and a factor af!2" same pair of vertices or by a flip of a single edge connecting
=(2n)!! for each vertex withn tadpoles(requiring 2 a vertex to itself. . _
stubs. The same asymptotic rules can be derived for the case of
This results in the followingFeynman” rulesfor the cal-  the microcanonical multigraph ensemble using similar argu-
culation of the asymptotically expected numinerof copies ments. _ _
Of an arbitrary Sma” grap[’y in a |arge random grap'ﬂ‘ In Table I, the eXpeCted counts are g|Ven for Subgl’aphs n
drawn from a CDRGn ensemble: the form of chains stars and simplecycles of arbitrary
(1) Label each stub iy with an independent color index. !ength for a CDRGm model and for a plain DRG model
(2) Associate with every vertex iy with n stubs labeled (CDRGH restricted to a single colirfor comparison. Note

ponentE,, . of thenth order combinatorial momer,, . pected count for eadeaf node with a single connection, due
(3) Associate with each edge ina factorT,,/N, where to the identityT(m)=1: The vertex factor for the leaf and

a,b are the color labels of the connected stubs. the single-edge factor gives upon summation of the color
(4) Multiply together all vertex and edge factors, and suml@Pel assigned to the single stub a factyN(m,)Tap/N

the result over the stub colors. =1, and their only effect is to increase the degree of the
(5) Divide the result by the proper symmetry facy to moment associated with the neighboring vertex by adding an

yield the expected courfn.). index b that is simply summed over.

Sketch of proofThe individualvertex factordecomposes
into a factor ofN for the number of ways to choose the target
vertex inI" and a factoile,,, , which takes some explain- Of obvious interest is how,, scales withN. The rules for
ing. Consider a vertex iy with two stubs, assigned colors the calculation of the expected count yield a factoMNofor
a,b. The colored degremm of the target vertex is drawn from each vertex and a factor & ! for every edge, so the total
pPm. and the number of ways to pick two stubs with correctpower of N is v—e, which can also be expressed the

3. Scaling withN and edge correlations

colors, givenm, is mym, if a#b andmy(m,—1) if a=b. number of mutually disconnected componentsyjnminus
Averaging overm yields E,,. The result generalizes to an the number of loops iy. For a connected,, this yields 1
arbitrary number of stubs. minus its number of loops. Thus, if is atree, the expected

Theedge factor T,/N represents the individual stub-stub number of copies scales &{N), while for aone-loop con-
connection probability as derived in the preceding section; inectedy, the expected number scales@§l); for anycon-
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nectedy with more than one loop there are asymptoticallyalso the actual shapes of the count distributions, as well as
no copies at all, since the expected number is suppressed liye correlations between different subgraph counts.
powers ofN. A first step in this direction is given by considering the

Let us demonstrate with a few simple examples the inexpectedsquared coun(ni} for a fixed graphy. The count
creased _correlation possibi.lities in CDRG models as opposefself consists of a sum over embedding positions, and so the
to a plain DRG model. First, we compare the counts forsqyared count is given by summing over two independent
triangles (three_-cyclesA), Wedges(three-chaln:;A), and. embedding positions, which can be reorganized as a sum
edges(two-chains]). In a CDRG ensemble, their respective oyer therelative position of the two copies as defined by
expected counts are vertex and edge coincidences, and a sum ovemtimlute

T 3 embedding position of the resulting composite graph.
r(TE) L. . . 2
(nyy= 6 (79 The key point is that the contribution tm?) from each

possible configuration of the composite graphis given by
its naive expected cou(unyz) as a subgraph oF , multiplied

(npy)y= ¥ (7b) by the number of distinct ways to combine the two copies
into y,. The multiplication by the number of ways to obtain
N(m) v, compensates, e.g., for the extra twofold symmetry typi-
(n))= — (70 cally arising in y,, related to the interchange of the two
copies.

Let us consider the case of a connectelleing a tree or
having a single loop, and do a brief analysis of the possible
scaling properties of the expected co&ntyz) of the com-
bined graphy,.

(ny)® For a connected, the expected embedding count scales
6(T)3' (8 asO(N”"®), yielding O(N) for a tree andO(1) for a one-

' loop graph. When combining two copies gfinto y,, they
absent in a generic CDRG ensemble. may overlap in a common subgraph, meerlap graph with

Similarly, the expected k-chain count is (n,) e<_jge and vertex countg ,v, . Then, the combined graph
=N1"E(TE)* 21/2. In plain DRG, this simplifies to a geo- Vi"” haved\(ertex COUﬂ;)Q—ZU—_lljlo anld edﬁﬁﬁ%‘:ﬁ‘fg:efe
metric series NEX~2/(2(m)*~3), which again can be ex- ~ So» @" its expected count will scale @¢ ).

pressed in terms of the wedge and edge counts: _ If yis atreg its_ only pos_sible overlap graphs are forests,
with v,—e,=0, with equality only for the empty subgraph.

A plain DRG ensemble yields an identical expression for
(n,) as well as for(n,), while the triangle count becomes
(nx)pra=E3/(6(m)?), yielding the relation

(Na)bRG=

(NYpre= (N )23k, (99  This means that the leadin@(N?) contribution to(n27>
comes entirely from the case where the two copiey afre
whereas in CDRG, this strict relation is absent. completely disjoint, yielding a leading contribution ¢n§)

A popular edge correlation measure in the literature is thenatching that of<n7>2, while the remaining contributions
so calledclustering coefficient Cdefined as the probability scale at most a®(N). As a result, the standard deviation of
that two randomly chosen neighbors of a random vertex aréhe y count scales at most a3(N'?), as compared to the
connected[18,19. In not-so-sparse random graph modelsO(N) behavior of the expected count, yielding an asymptoti-
with an excessive amount of triangles, as can be anticipatechlly sharp distribution for the correspondimgensiveentity,
to result with a power tail in the degree distribution or in the count density,,=n,/N.
models based on an underlying regular structGrean attain If v has asingle loop we havev —e=0 and the expected
a finite value. This is not the case in the type of models wecount isfinite. Then, we are interested in contributions to
are considering here, and we expeCtto decrease as (ni) scaling at least a®(1), requiringv,—e,<0. Hence,
O(N™!). We can estimateC by comparing the expected the only interesting overlap graphs between the two copies of
counts for trianglesthree-cyclesand three-chains. Their ra- y are theempty graphand connected one-loop grapfis-
tio multiplied by 3 gives the estimat€=Tr(TE)*/(NE).  cluding the entirey) where the two copies of share the
While this indeed scales a3(N~1), the finite numbeNC loop part(possibly rotated or flippedboth yieldingv,— e,
has a nontrivial dependence @n allowing it to deviate from  =0. There are two possibilities here.
the DRG value oE?/(m)°. _ _ If y consists of éare loopwithout decorations, the only

These examples serve to illustrate the role of the hiddefhteresting contributions t¢n2) are those from cases where
color in enabling a nontrivial edge correlation structure andhe two copies are completely disjoint or completely identi-
in lifting the simple relations between different subgraphqg| yielding<n§)=<ny)2+<ny> to leading order. The argu-

counts present in DRG. ment can be generalized to higher moments pf showing
that the asymptotic distribution of the, is Poissonianfor
suchy.

The expected courfn,) of a given subgraply gives only Alternatively, if v consists of adecorated loopi.e., a
partial information on the count distribution. Of interest aresingle loop with attached tree decorations, there are addi-

4. Beyond expected counts: Distribution shape
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tional contributions tc(ni) to leading order, due to configu- of any small simple graply in the form of a tree or a one-
rations of y, where the two copies of share the loop but loop connected graph.
not all of the decorations; as a result, the asymptotic distri- There are two important implications for the correspond-
bution of n,, fails to be Poissonian and is typically wider. ing CDRGs ensemble.
(1) The probability that a random graph from the associ-
5. Count correlations Sted multigraph ensemble be simple is asymptotically given

In a similar way, thecorrelation between the counts for Y
two distinct small graphsy andy’, say, can be analyzed by Prok(simple=e™“"7, (10
considering the expected value of the product of their counts, ) ) _ )

(n,n,). Again, this can be seen as a sum over their relativés claimed in Refl15] without a detailed proof.
embedding positions and over the absolute position of the (2) The count distribution for a simple small subgraph
combined graph. in a random graph drawn from a CDR&Gensemble is to

If both graphs aretrees the leading contribution to leading orderasymptotically identicato the corresponding
(n,n.,) comes from cases where the two subgraphs are condlistribution in a random graph drawn from the corresponding
pletely disjoint. CDRG+m ensemble.

In the mixed caseof one graph being a tree, the other a  As a result, the computational rules for subgraph counts
connected one-loop graph, the leading contribution tddiven in the preceding section apply without modification
(n,n.,) again comes entirely from the completely disjoint @lso to CDRGs, for the asymptotically expected subgraph
case. The argument can be generalized to higher momeng@Qunts of small simple graphs to leading order. Faroa-
indicating the asymptotic lack of correlations between thesimple y, the count will, of course, vanish identically—a

two counts. simple graph has only simple subgraphs.
The final case of interest is whdyoth graphs are con-
nected one-loop graphs. If their loopkffer in length, the VI. GLOBAL PROPERTIES

leading contribution t¢n.n,,) again stems entirely from the . ) )
completely disjoint cases, and the counts are asymptotically 1he original CDRG papefr15] contained a brief generat-
uncorrelated. If the loops have treamelength, however, N9 function analysis of the asymptotic size distribution of
there are additional contributions from cases where the ovefonnected componentslusters. Here, we give a more de-
lap graph contains the loop, yielding a positive correlationtdiled derivation, combined with a more elaborate analysis of
between the two counts. the result.

For a discussion of subgraph counts in the context of the

(not necessarily sparselassic model, based on the concepts A. Connected component statistics

of balanced and strictly balanced subgraphs, see, e.g., Chap. consider a large random graphdrawn from an arbitrary
4 of Ref.[2]. CDRG-m ensemble. LeP,, be the distribution of the number
of vertices Gsn<o of a cluster as revealed by starting from
a random vertex il and recursively revealing neighbors of

previously revealed vertices. Lg{z) be its generating func-
Next, we wish to study the statistics of small subgraphtjon,

counts in a CDRGs ensemble, obtained as the restriction to

simple graphs of the corresponding multigraph ensemble, n

where simple means the absence of loops of length one and g(z):; PnZ". 1D
two.

Thus, we are led to study the distribution of such loops inat any finite stage in the revelation process, loops in the
the multigraph ensemble, as represented by the subgragiybgraph revealed so far are suppressed with factors\of 1/
counts wheny is apure one-cyclévertex with a tadpoleor  Thus, in the thermodynamic limit, we expect the revealed
a pure two-cycletwo vertices connected by a double efige subgraph, as long as it is finite, to form a tree, and as a result,
The relevant results from the preceding section as applied tghe following analysis can be expected to apply equally well
these counts imply the following for a random graptirom  to the corresponding ensemble sifple graphs
a CDRGm ensemble. In terms of the generating functioH(x) for {p.}, as

(i) The expected numbein;) of one-cycles inl" is as-  defined in Eq(1), g(z) can be expressed as
ymptotically given bya=Tr(TE)/2, and the count asymp-
totically follows a Poissonian distribution, Profy) 9(z)=zH(h(z)) (12
= eiaanllnl! .

(i) The expected numbéin,) of two-cycles inI" is as-  in terms of the set of similarly defined generating functions
ymptotically given byB=Tr(TE)?/4, and the count asymp- h,(z) for the number of vertices in the subtree revealed by
totically follows a Poissonian distribution, Prat) following the edge emanating from a random stub of given
=e PB"2/n,!. colora. The rationale behind Eq12) is that the initial vertex

(i) The one-cycle and two-cycle counts are asymptoti-has a random colored degreedrawn from the distribution
cally uncorrelated with each other as well as with the counp,,. This yields a factor of for the initial vertex and a factor

B. Subgraphs statistics Il: CDRG-s
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of h,(z) for each of itsm, stubs of colora; summing the lows. Define properly normalized functiongz),h,(z) in

result overm, weighted withp,,, yields Eq.(12). terms of the stable solutiongz),h(z) as
The edge functionh,(z) must satisfy the recursive equa-
tions, A(2)= ha(z) (154
2 ha(1)”
ha(2) =22 TapdpH(h(2)), (13) . g
° 9(2)=—g(1). (15b)

following from a similar argument: An edge emanating from ] ) »
a stub of colora has the colob in the other end with prob- These will then satisfyby rewriting Eqs.(12) and (13)]

ability T,,(my), and is then attached to a vertex with colored

degreem with probability p,,m,/(my). This yields a total 9(2)=2zH(h(2)), (163
factor of T,,m,p,, - Throw in a factor oz to account for that

vertex and a factor dfi;(z) for each subtree reached via one ha(z)=2>, T.dpH(h(2)), (16b)
of its remainingm;— é.,, stubs of colorc; finally, summing b

overb andm yields Eq.(13). R R
whereH(x) andT are given by

B. The phase transition and the emergence of the giant H(h(1) X x)
Of particular interest is the result f@=1. The recur- T (17a
rence Eq.(13) for h(z) for the case ofz=1 possesses a
trivial fixed pointh(1)=1, yieldingg(1)=1, expressing the ~ 1 1
conservation of probability. However, this fixed point repre- Tab:WTabW' (17b)
a b

sents the physical solution only if it is stable, as determined

by the Jacobiad associated with the linearized recurrence inThey describe thelual CDRG model that is subcritical by
the neighborhood of the fixed point.has the components definition: The stable fixed point is mapped fa(1)

=1=g(1)=1. The corresponding transformed CDD is ob-
tained from the original one by a geometric transfom,
«py,h(1)™M. This duality has analogs in other sparse models,
in terms of the matriE of second-order combinatorial mo- such as DRQ@trivially), IRG [8], and the classic modgg].
ments. If all eigenvalues aI=TE are less than unity, the
trivial fixed pointh(1)=1 is stable, and the revelation as- VIl. REDUNDANCY
ymptotically corresponds to a subcritical branching process
always yielding finite trees.

Otherwise, the trivial fixed pointi(1)=1 is unstable and
will repel the iterates of the recursion, Ed.3). This signals

Jap=2>, TacEeped=TE (14)
C

" A CDRG model defines a unique ensemble of graphs. The
opposite is not generally true—there is a built-in redundancy
in the CDRG description, such that several models may de-
scribe one and the same graph ensemble, as we will now

that the asymptotic branching process is supercritical, with demonstrate. based on the local as well as the global proper-

finite probability of producing infinite trees. In such a case, Bies of the graphs in a CDRG ensemble, as analyzed in Secs
nontrivial fixed point will appear and attract the iterates,v and VIl above ' '
yielding a solution withh,(1)<1, implyingg(1)=<1 by vir- Consider a gi.ven asymptotic CDRG model and define a

tue of Eq.(12). The corresponding probability deficit 1 . . i
—0(1) is interpreted as being due to the existence gibat gggrs](feo:rrglﬁgfcr::%dee(é{b;/ntés_:_ngs stochastic matthixJ1=1, to
componentand measures the finite probability that the ran-

domly chosen vertex belongs to the giant, asymptotically o () —

containing a fraction +g(1) of the vertices. HOO=H(Ux), (183
In analogy to the case of a single color, i.e., DRG, the

transition is typically second order, being due to an initially

unstable, nontrivial fixed point passing the trivial one wh|Ie.|_hiS transform conserves the CDD normalizatidt(1)

f[hey exchange stability characters—a transcritical bifurcation_ 1, and leaves form invariant the constraint BnE. (3),
in the language of dynamical systems.

It also leaves invariant the recursive relations, E),
_ for the generating functionk(z) for the size of a subtree
C. Duality found by following an edge starting from a stub of definite

For asupercriticalmodel, the solution fog(z) resulting  color, if h(z) is transformed td(z) = U~ *h(z). This leaves
from Eq.(12) for the stable fixed point of the recursion, Eqg. g(z) invariant by virtue of Eq(12), and thus will not affect
(13), corresponds to a generating function for the contributhe observable distribution of component siz&g}.
tions from finite clusters only, and can be shown to emulate As for the local properties in the form of expected small
another, subcritical CDRG model—ttuial model—as fol-  subgraph counts, also these are left invariant, since the com-

T=U"1TU . (18b
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putational (Feynman rules given in Sec. V A 2 invariably distribution. IRG(inhomogeneous random graph8] is de-
yield expressions in the form afontractionsbetween the fined as a colored extension of the classic model of simple
color indices of combinatorial moment,), on the one graphs, where a distinct ensemble of graphs of $izés
hand, and those of the color preference maffixon the defined in terms of colored vertices, where each vertex is
other. independently assigned a coloe[1, ... L] according to
The transform can be interpreted asteange of basisn  an arbitrary but fixed distributiofr;}. Then for every pair of
color space, such thét,j gives the probabilityP;, that the  vertices, the corresponding edge is independently realized
original colora corresponds to the transformed color with a color-dependent probability given lsy /N, wherei, j
This suggests the existence of a continuous symmetrire the colors assigned to the vertices.
group, ~SL(K—1), for the class of CDRG models. Of  For such a model, a generating function analysis of the
course, we have to be careful to stay in the physical regimecluster size distribution can be done, analogqus to the one
with non-negative values fdiT 5,} and{p,} (but not neces- represented by Eq¢12) and(13). The resul{8] is that for
sarily for {U,,} themselvels which restricts the possible IRG. the generating function for the cluster size distribution,
transforms and prevents the class of transformations to forl(2) as defined in Eq. 11, can be written as a weighted sum
a group. Nevertheless, it implies that CDRG consists in
equivalence classesf models, related by transformations of
the type(18a and (18b). g(z)=2i rigi(2),
One can consider even more general transformations,
where also the number of coloks is changed, requiring a \hereq,(2) is the generating function for the size distribu-
non squareU. This enables the reducibility under certain tjon conditional on the IRG vertex coloi of a randomly
conditions of a model to an equivalent model with a smallefcposen initial vertex. These satisfy a set of recursive relations
color space. amounting to

(21)

VIIl. SUBCLASSES EQUIVALENT TO OTHER MODELS
A DRG gi<z>=zexp($ cijrlgj(2 1] (22
The restriction of CDRG to a single cold{,=1, trivially _ o
yields DRG, where a plain degree distributifm,,} is given, ~ As shown in Ref[15], by definingg;(z) = zexpZ,Cia[ha(2)
while T reduces to a numbéF, constrained to equgm)~*  —1I} and ¢;;=2,,CiaTarCjp. Egs. (12 and (13) can be
by virtue of Eq.(3). written in the form of Egs.(21) and (22), showing the
More generally, a DRG model effectively results as soor@Symptotic equivalence from the point of view of cluster size
asT has rank 1, in which casE takes the form of a direct distributions. _ _ _ .
product, forced to equalprg=1(m) 1", with all compo- An interesting question then is whether this relation per-
nents equal. This prevents the stub colors from affecting th&iSts when considering small subgraph counts. In the rules

stub pairing statistics, resulting in a completely random, unfor the computation of the asymptotically expected count of
biased stub pairing. a small subgraply, as defined in Sec. V, each vertexjn

with n stubs is associated with a factor®E, . For a CDD
B. IRG as defined by Eg(20), the combinatorial momerg,, sim-
_ S plifies to =-_,r;,C”", whereC°" stands for the outeften-
~ Next we wish to identify the CDRG subclass correspond-qqp nroduct ofn factors ofC;, one for every stub. Absorb-
ing to IRG. To that end, consider the restriction of CDRG toing these stub factors into the edge faciii, yields a set
ensembles of simple graphs with a colored degree distribyst Feynman rules with an independent IRG cdidor each
tion given by a mixture of multivariate Poissonians vertex, acquiring a corresponding factordf; and a factor
L of CiTTCj/Nzcij /N for every edge connecting a pair of
pmzz riH exq_cia)cga/ma! (19 vertices with respective IRG coloisj. The product of ver-
=1 a tex and edge factors should be summed over the IRG colors
) i,j,... and theresult divided by the usual symmetry factor
equivalent to S
-
L Indeed, these are the correct rules for the expected simple
H(x)=>, riexd G- (x—1)], (200  subgraph counts in an IRG model, as can be derived using
i=1 simple arguments; this confirms the asymptotic equivalence

) ) between the two models previously indicated by the cluster
for someL=1, where each term in the sum oviecorre-  sjze analysis.

sponds to a non-negative weighttimes a normalized mul-
tivariate Poissonian with colored degree averégg;=C;
={C,,}, with the weights summing up to unit{;r;=1.

In Ref. [15], the asymptotic equivalence of such an en- As a special case of the IRG subclass, a CD&REn-
semble to an associated IRG ensemble was shown, based semble with a CDD in the form of a single multivariate Pois-
an analysis of the Eq912) and (13) for the cluster size sonian, as defined by Eq20) with a single term,H(x)

C. Other subclasses
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=exfC-(x—1)], is asymptotically equivalent to the classic of cluster sizes, for which we have performed a detailed

model with the parameter value=C'TC=C"-1=3,C,. analysis using generating function techniques. The analysis
Another interesting subclass of CDRG is defined by theshows that an arbitrary CDRG model displays a percolation

restriction to models withmonochromevertices[10], such  threshold at a well-defined critical hypersurface in parameter

that for each vertex all its stubs are forced to have the samgPace, above which a giant component appears containing a
color. It is a trivial exercise to derive the rules for subgraphf'n'te fraction of the vertices in the thermodynamic limit. We

counts as well as the equations for the generating functioﬁeivfe aolfsc; 36g‘lOr?]itéztledaﬁ)ragszg%?;r'gcztmggfIrgggef)gz
g(z) for the cluster size distribution in such an ensemble. o ual N : ubcrit
scribing the nongiant part.

. In fact, thg monochrome subclass is sufficient for sPan= - rpe algebraic properties of the equations involved in both
hing IRG, since for a given IRG moo_lel as defined by he local and global analysis reveal a redundataysym-
{cij}.{ri}, one can always find an associated CDRG ,mOdeInetry) in CDRG, such that several superficially distinct
with the identical color space by usingdiagonal matrix,  mogels describe the same observable ensemble of graphs.
Cia=Cidia with C;=Zc;jrj. This yields an equivalent Thjs redundancy can be seen as being due to the possibility
monochrome CDRG model defined By, =c;;/(C;Cj) and  of a change of basis in the abstract color space.

H(X) =Ziriexd Ci(x —1)]. The rules for the computation of expected subgraph
counts have a form strongly reminiscent of Feynman rules
IX. CONCLUDING REMARKS for perturbative calculations in statistical field theory, indi-

) cating a relationship between CDRG models and field theo-
We have considered and analyzed a recently suggestq%s, in analogy to the case for DR@0]. Work is in progress

general class of ensembles, CDRG, of sparse random graphg, explore such relations, and the results will be presented in
based on a hidden coloring of stubs. We have extended thg separate papé1].

formalism to incorporate ensembles of multigrag®HRG- The CDRG class of random graph models is very general
m), in addition to the originally considered ensembles ofand contains several previously studied models and classes
simple graphgCDRG). of models as special cases. Its structure is also such that it

A distinct random graph model can be defined asymptotishould admit a straightforward generalization, e.g., to models
cally by specifying a colored degree distributifm,}, con-  of directed graphs. While CDRG so far has been considered
trolling the distribution in the number and colors of the con-only for degree distributions with exponential fall-off for
nections of a node, and a color preference maffix large degrees, it should be extendable to power-behaved de-
governing the relative tendency for connections betweemyree distributions if proper care is taken. The key obstacle
stubs with definite pairs of colors. Based on such aninherited from DRG is that in such a case the higher mo-
asymptotic model, an ensemble of simple graphs or multiments of the(colored degree distribution diverge, which
graphs of a given size can be defined. makes some observables—in particular, for CDRGvery

For such models, we have demonstrated the calculabilitgensitive to the precise definition of the ensembles.
of local as well as global observable structural properties, Anticipating that the formalism can be extended as indi-
important for the anticipated use of the formalism as a targetated above, a few fundamental questions remain to be an-
for model inference based on the observed properties of reagwered.
world networks. (1) Is the resulting class complet¢’ i.e., does it span

Local graph characteristics can be represented by the stavery reasonable model of sparse, truly random graphs? If
tistics of small subgraph counts. We have derived a set ofiot, how generalize it?
simple rules for calculating the asymptotically expected (2) Is it unnecessarily general, i.e., can an arbitrary CDRG
count of an arbitrary small graph and demonstrated thenodel be reformulated in a simple way entirely in terms of
equivalence between the two types of ensemtdésimple  observable graph properties, without utilizing hidden vari-
or multigraphg as far as simple subgraphs counts are conables such as color?
cerned. We have also discussed the shapes of the count dis-
tributions and shown that a Poissonian distribution results ACKNOWLEDGMENTS
asymptotically only for simple cycles. By comparing the ex-
pected counts in DRG and CDRG of certain simple sub- An informative discussion with K. Nowicki on the com-
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